【AI】mac 本地部署 Dify 实现智能体

下载 Ollama 访问 Ollama 下载页,下载对应系统 Ollama 客户端。或者参考文章【实战AI】macbook M1 本地ollama运行deepseek_m1 max可以跑deepseek吗-CSDN博客

dify

开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。

https://cloud.dify.ai/app

前提条件是,本地安装好了docker

  1. github 源码下载:

git clone https://github.com/langgenius/dify.git

  1. 配置dify

执行

cd /dify/docker

cp .env.example .env

3.启动

docker compose up -d

自行注册登录即可;

访问

在你的浏览里里输入http://localhost,就能看到这样的界面;

第一次登录,设置一下管理员账号。完成设置后,浏览器会自动跳转到登录页面,输入用户名和密码就能进入Dify 工作台。

配置本地模型

可以将自己本地的模型配置到dify中使用,也可以配置其他在线大模型,需要申请秘钥进行配置;

这里记录一下,我将我前两篇文章搭建的本地deepseek-r1:14b 模型配置的过程;

点击右上角用户名 》 设置 》 模型供应商

往下翻,找到ollama

  • 模型名称: 可以执行 ollma list 查看

  • 基础 URL:http://<your-ollama-endpoint-domain>:11434

    若 Dify 为 Docker 部署,建议填写局域网 IP 地址,例如:http://192.168.1.100:11434 或 Docker 容器的内部 IP 地址,例如:http://host.docker.internal:11434

    若为本地源码部署,可填写 http://localhost:11434

在 Mac 上设置环境变量

如果 Ollama 作为 macOS 应用程序运行,则应使用以下命令设置环境变量 launchctl

  1. 通过调用 launchctl setenv 设置环境变量:

    Copy

    bash 复制代码
    launchctl setenv OLLAMA_HOST "0.0.0.0"
  2. 重启 Ollama 应用程序。

  • 模型类型:对话

  • 模型上下文长度:4096

    模型的最大上下文长度,若不清楚可填写默认值 4096。

  • 最大 token 上限:4096

    模型返回内容的最大 token 数量,若模型无特别说明,则可与模型上下文长度保持一致。

  • 是否支持 Vision:

    当模型支持图片理解(多模态)勾选此项,如 llava

点击 "保存" 校验无误后即可在应用中使用该模型。

相关推荐
Codebee1 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º2 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys2 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56782 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子2 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144873 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile3 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5773 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥3 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造