【文本】词嵌入经典模型:从one-hot到BERT

【文本】词嵌入经典模型:从one-hot到BERT

one-hot编码(独热编码):

  • 根据词表的所有词构建一个向量特征。每一个文段中每个单词有一个词向量(二进制且只有一位为1) --- 稀疏、缺乏语义(father&mother;like&love)

word2vec编码:

  • 原则:"一个词被周围的词所代表"
    • 有两种模型:CBOW(Continuous Bag of Words) 上下文单词预测目标单词(完形填空)Skip-Gram 目标单词预测上下文单词(造句),中心词可替换,上下文不变,那就是相似的词
  • 步骤:
    • 随机初始化向量表示,经历无数次训练(如下)
    • 正样本:-(正向传播 )将中心词和上下文两个词向量输入神经网络,模型中输出的是"是否为上下文的概率"-(反向传播)概率不符合实际(损失函数大),则更新神经网络模型的参数(根据梯度调整权重),以及两个词的向量表达,使得下次预测更接近于1(学到了中心词的语义)
    • 负样本:使其概率更接近0
  • --- 确乏全文信息;无法解决一词多义

Bert模型

  • Bert模型基于transformer架构,加入句向量(解决全文信息),可以处理一词多义
  • 苹果(中心词)的语义信息,由句子内所有上下文的单词有关,整个句子信息都要混入当前单词中(self-attention,用文本中的更多上下词,增加目标此语义,中心词语义=∑所有词*权重,权重由模型训练)
  • --- 考虑完形填空(MLM任务 ),在训练时随机替换句子中++一些++词为mask。一个单词被mask掉后,根据句子中其他词的语义中混合的信息,反向猜出被mask的词,输出的mask词预测是一个概率分布,表示每个单词被成功预测的概率,目标是向1训练(减少损失函数);没有负样本训练。
  • --- 考虑续写(NSP任务 ),即句子间训练(模型接收一对句子,判断第二个句子是否是第一个句子的下一句),帮助理解句子间逻辑
    • --- CLS特殊符号,排入开头位值,但是没有自己语义(所以能够表示整个句子信息---存在争议)
相关推荐
说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技1 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_11 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎2 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎2 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊3 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
CareyWYR3 小时前
大模型真的能做推荐系统吗?ARAG论文给了我一个颠覆性的答案
人工智能
特立独行的猫a3 小时前
百度AI文心大模型4.5系列开源模型评测,从安装部署到应用体验
人工智能·百度·开源·文心一言·文心一言4.5
SKYDROID云卓小助手3 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理