【文本】词嵌入经典模型:从one-hot到BERT

【文本】词嵌入经典模型:从one-hot到BERT

one-hot编码(独热编码):

  • 根据词表的所有词构建一个向量特征。每一个文段中每个单词有一个词向量(二进制且只有一位为1) --- 稀疏、缺乏语义(father&mother;like&love)

word2vec编码:

  • 原则:"一个词被周围的词所代表"
    • 有两种模型:CBOW(Continuous Bag of Words) 上下文单词预测目标单词(完形填空)Skip-Gram 目标单词预测上下文单词(造句),中心词可替换,上下文不变,那就是相似的词
  • 步骤:
    • 随机初始化向量表示,经历无数次训练(如下)
    • 正样本:-(正向传播 )将中心词和上下文两个词向量输入神经网络,模型中输出的是"是否为上下文的概率"-(反向传播)概率不符合实际(损失函数大),则更新神经网络模型的参数(根据梯度调整权重),以及两个词的向量表达,使得下次预测更接近于1(学到了中心词的语义)
    • 负样本:使其概率更接近0
  • --- 确乏全文信息;无法解决一词多义

Bert模型

  • Bert模型基于transformer架构,加入句向量(解决全文信息),可以处理一词多义
  • 苹果(中心词)的语义信息,由句子内所有上下文的单词有关,整个句子信息都要混入当前单词中(self-attention,用文本中的更多上下词,增加目标此语义,中心词语义=∑所有词*权重,权重由模型训练)
  • --- 考虑完形填空(MLM任务 ),在训练时随机替换句子中++一些++词为mask。一个单词被mask掉后,根据句子中其他词的语义中混合的信息,反向猜出被mask的词,输出的mask词预测是一个概率分布,表示每个单词被成功预测的概率,目标是向1训练(减少损失函数);没有负样本训练。
  • --- 考虑续写(NSP任务 ),即句子间训练(模型接收一对句子,判断第二个句子是否是第一个句子的下一句),帮助理解句子间逻辑
    • --- CLS特殊符号,排入开头位值,但是没有自己语义(所以能够表示整个句子信息---存在争议)
相关推荐
aiguangyuan2 分钟前
从零构建字符级RNN:用PyTorch实现莎士比亚风格文本生成
人工智能·python·nlp
Leeniux_4 分钟前
高速道面病害检测项目-智能化的实现
深度学习·目标检测
Yiyaoshujuku11 分钟前
疾病的发病率、发病人数、患病率、患病人数、死亡率、死亡人数查询网站及数据库
数据库·人工智能·算法
larance15 分钟前
机器学习分类和设计原则
人工智能·机器学习·分类
boring_11117 分钟前
AI时代本质的思考
网络·人工智能·智能路由器
红尘炼丹客18 分钟前
论文《LLM-in-Sandbox Elicits General Agentic Intelligence》解析
人工智能·深度学习·大模型·llm-in-sandbox
青主创享阁21 分钟前
玄晶引擎:基于多模态大模型的全流程AI自动化架构设计与落地实践
运维·人工智能·自动化
世优科技虚拟人24 分钟前
从吉祥物“复活”到AI实训:世优科技数字人赋能智慧校园升级
人工智能
jiang_changsheng24 分钟前
comfyui节点插件笔记总结新增加
人工智能·算法·计算机视觉·comfyui
BEOL贝尔科技24 分钟前
通过采集器监测环境的温湿度如果这个采集器连上网络接入云平台会发生什么呢?
网络·人工智能·数据分析