机器学习和深度神经网络 参数调参数 太麻烦,非常费时间怎么办,用自动化超参数优化方法

自动化超参数优化方法主要包括以下几种‌:

  1. ‌**网格搜索(Grid Search)**‌:网格搜索是通过在给定的超参数搜索空间内尝试所有可能的组合,最后找出最优的超参数组合。这种方法虽然直观,但计算成本较高,适用于参数空间较小的情况‌12。

  2. ‌**随机搜索(Random Search)**‌:随机搜索在参数搜索空间中随机采样超参数组合,并记录每次采样的结果。如果效果提升不大,可以提前停止搜索,节省计算资源‌24。

  3. ‌**贝叶斯优化(Bayesian Optimization)**‌:贝叶斯优化通过拟合一个模型(如随机森林或高斯过程),将超参数组合作为输入,目标值(如损失或准确率)作为输出。通过有限的采样点来决定下一个采样点的选择,依据是获取函数,该函数会根据置信区间和目标值来评分每个超参数组合。随着采样点的增多,贝叶斯优化的效果会逐渐提升‌24。

  4. ‌**树结构Parzen估计器(Tree-structured Parzen Estimators, TPE)**‌:TPE是一种基于贝叶斯优化的方法,利用树结构的Parzen估计器来优化超参数。TPE通常与贝叶斯优化结合使用,效果较好‌4。

  5. ‌**Hyperband**‌:Hyperband通过多次运行连续减半法来优化参数选择。初始时,n设置较大,m较小,随着迭代次数增加,n逐渐减小,m逐渐增大。这种方法能够更有效地探索参数空间‌2。

  6. ‌**遗传算法(Genetic Algorithms)和粒子群优化(Particle Swarm Optimization)**‌:这些方法属于遗传学派,通过模拟自然选择和群体智能来寻找最优解。虽然这些方法在某些情况下表现较好,但通常不适用于超参数优化,因为其性能较差且计算时间较长‌5。

相关推荐
小天才才9 分钟前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
MPCTHU16 分钟前
机器学习的数学基础:神经网络
机器学习
草莓熊Lotso22 分钟前
【数据结构初阶】--算法复杂度的深度解析
c语言·开发语言·数据结构·经验分享·笔记·其他·算法
KyollBM29 分钟前
【CF】Day75——CF (Div. 2) B (数学 + 贪心) + CF 882 (Div. 2) C (01Trie | 区间最大异或和)
c语言·c++·算法
新加坡内哥谈技术39 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
CV点灯大师43 分钟前
C++算法训练营 Day10 栈与队列(1)
c++·redis·算法
GGBondlctrl1 小时前
【leetcode】递归,回溯思想 + 巧妙解法-解决“N皇后”,以及“解数独”题目
算法·leetcode·n皇后·有效的数独·解数独·映射思想·数学思想
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习