Python爬虫selenium验证-中文识别点选+图片验证码案例

1.获取图片

python 复制代码
import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains

service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)

# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')

# 2.点击【文字点选验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()

# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()

time.sleep(5)

# 要识别的目标图片
target_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_ques_back'
)
target_tag.screenshot("target.png")

# 识别图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
bg_tag.screenshot("bg.png")

time.sleep(2000)
driver.close()

2.目标识别

截图每个字符,并基于ddddocr识别。

python 复制代码
import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains

service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)

# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')

# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()

# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()

# 4.等待验证码出来
time.sleep(5)

# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")

for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)

print("要识别的文字:", target_word_list)

time.sleep(2000)
driver.close()

3.背景坐标识别

3.1 ddddocr

能识别,但是发现默认识别率有点低,想要提升识别率,可以搭建Pytorch环境对模型进行训练,参考:https://github.com/sml2h3/dddd_trainer

python 复制代码
import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO

service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)

# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')

# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()

# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()

# 4.等待验证码出来
time.sleep(5)

# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)

print("要识别的文字:", target_word_list)

# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png

# 7.识别背景中的所有文字并获取坐标
ocr = ddddocr.DdddOcr(show_ad=False, det=True)
poses = ocr.detection(content) # [(x1, y1, x2, y2), (x1, y1, x2, y2), x1, y1, x2, y2]

# 8.循环坐标中的每个文字并识别
bg_word_dict = {}
img = Image.open(BytesIO(content))

for box in poses:
    x1, y1, x2, y2 = box
    # 根据坐标获取每个文字的图片
    corp = img.crop(box)
    img_byte = BytesIO()
    corp.save(img_byte, 'png')
    # 识别文字
    ocr2 = ddddocr.DdddOcr(show_ad=False)
    word = ocr2.classification(img_byte.getvalue())  # 识别率低

    # 获取每个字的坐标  {"鸭":}
    bg_word_dict[word] = [int((x1 + x2) / 2), int((y1 + y2) / 2)]

print(bg_word_dict)

time.sleep(1000)
driver.close()

3.2 打码平台

https://www.chaojiying.com/

python 复制代码
import base64
import requests
from hashlib import md5

file_bytes = open('5.jpg', 'rb').read()

res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(file_bytes)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)

res_dict = res.json()
print(res_dict)
# {'err_no': 0, 'err_str': 'OK', 'pic_id': '1234612060701120002', 'pic_str': '的,86,73|粉,111,38|菜,40,49|香,198,101', 'md5': 'faac71fc832b2ead01ffb4e813f3be60'}

结合极验案例截图+识别:

python 复制代码
import re
import time
import ddddocr
import requests
import base64
import requests
from hashlib import md5
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO

service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)

# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')

# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()

# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()

# 4.等待验证码出来
time.sleep(5)

# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)

print("要识别的文字:", target_word_list)

# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png
bg_tag.screenshot("bg.png")

# 7.识别背景中的所有文字并获取坐标
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(content)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)

res_dict = res.json()
print(res_dict)

# 8.每个字的坐标  {"鸭":(196,85), ...}    target_word_list = ["花","鸭","字"]
bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):
    word, x, y = item.split(",")
    bg_word_dict[word] = (x, y)
    
print(bg_word_dict)

time.sleep(1000)
driver.close()

4.坐标点击

根据坐标,在验证码上进行点击。

python 复制代码
ActionChains(driver).move_to_element_with_offset(标签对象, xoffset=x, yoffset=y).click().perform()
python 复制代码
import re
import time
import ddddocr
import requests
import base64
import requests
from hashlib import md5
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO

service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)

# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')

# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()

# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()

# 4.等待验证码出来
time.sleep(5)

# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)

print("要识别的文字:", target_word_list)

# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png

# bg_tag.screenshot("bg.png")

# 7.识别背景中的所有文字并获取坐标
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("自己密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(content)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)

res_dict = res.json()

bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):
    word, x, y = item.split(",")
    bg_word_dict[word] = (x, y)

print(bg_word_dict)
# target_word_list = ['粉', '菜', '香']
# bg_word_dict = {'粉': ('10', '10'), '菜': ('50', '50'), '香': ('100', '93')}
# 8.点击
for word in target_word_list:
    time.sleep(2)
    group = bg_word_dict.get(word)
    if not group:
        continue
    x, y = group
    x = int(x) - int(bg_tag.size['width'] / 2)
    y = int(y) - int(bg_tag.size['height'] / 2)
    ActionChains(driver).move_to_element_with_offset(bg_tag, xoffset=x, yoffset=y).click().perform()

time.sleep(1000)
driver.close()

5.图片验证码

在很多登录、注册、频繁操作等行为时,一般都会加入验证码的功能。

如果想要基于代码实现某些功能,就必须实现:自动识别验证码,然后再做其他功能。

6.识别

基于Python的模块 ddddocr 可以实现对图片验证码的识别。

复制代码
pip3.11 install ddddocr==1.4.9  -i https://mirrors.aliyun.com/pypi/simple/
pip3.11 install Pillow==9.5.0

pip install ddddocr==1.4.9  -i https://mirrors.aliyun.com/pypi/simple/
pip install Pillow==9.5.0

6.1 本地识别

python 复制代码
import ddddocr

ocr = ddddocr.DdddOcr(show_ad=False)
with open("img/v1.jpg", mode='rb') as f:
    body = f.read()
code = ocr.classification(body)
print(code)

6.2 在线识别

也可以直接请求获取图片,然后直接识别:

python 复制代码
import ddddocr
import requests

res = requests.get(url="https://console.zbox.filez.com/captcha/create/reg?_t=1701511836608")

ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)
python 复制代码
import ddddocr
import requests


res = requests.get(
    url=f"https://api.ruanwen.la/api/auth/captcha?captcha_token=n5A6VXIsMiI4MTKoco0VigkZbByJbDahhRHGNJmS"
)

ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)

6.3 base64

有些平台的图片是以base64编码形式存在,需要处理下在识别。

python 复制代码
import base64
import ddddocr

content = base64.b64decode("iVBORw0KGgoAAAANSUhEUgAAAGQAAAAoCAYAAAAIeF9DAAAHGElEQVR4Xu2a2VNTZxTAHZ/62of+BX3rdPrUmaq1da3WQWur1mqntrQWLe7UkUoQlEWFqFDZZN8hUBWKQUVpQDCyVUeltVWIIiAEZHWBAEk4zffZe+bmS+6SEEzE/GbOkHvPuXeY85t7vyWZBV48ilnsCS/uxSvEw3hthJydXWITnsiMFyLWfLGcu5jRQuQ2W27dy8ArBOTXvQxmrBBHm+xo/XQhKkTffRu0NSfgt8KvISttGaQlfQyFOWtBXboDbt7Ig6HBdvYSj6C7awDC3kqGg4oC8N0YC6uWhcPCOUHgszQMtvudgsK8Gnj2dNTqGmeErH47Z8rBYlfI6MgAXLqwH5Lj50iGJzL//UDJWP1pBDTfasNrnBEyHdgIef6sF1R5X9o0Xig8Ebb5QrF8QajlLTDoMTIIVkLMZiOcKfrWquGXLyqgo70BDKNDNG8wDFleCTehsS4JivK/4l/uMWxco4T4WDUo30yH+zo9PH0yavn/x+nnuBg1LPhgP0qJjjzjuUJuNGWiiJSEedByt4KffiWxt9bIz65GISveO2CVczcoxGQah+y05SikqT6ZX/fKw4khkfNGEQpZNDeILXUrKKT13mWUkZmyBIxGA7/O5XT2PoL0c9kQcPIX+D5yK2w/vgcis6Oh5qYWJicnac2msM0YrmRw4BkK+cwyA3OEuLh4CApS0GhoaGTTNtTXN2B9fHwCm7YBhdRWR6GQK5rD/BqXU9FQCb4RflYN50d0fgwYxsemTUjJ6ToUEh6iYtOi1NXVY4MTEhLZtA2khquvr69n0zagEP5gfu/uBXruga4aykr8ISv1E0g/tRBUueug+o8I6NH/hTdwFO3tOhsB9iK5NN2lQsbHjZbJSR9kplbC4nkKKsNnySHoejTAlooyOjoKisAXDSYRN2cvW4Lo9XqsCwkJpddKgUJyM3xQSH9fC9RUHbWabbFBnigy63KEEcMIbI3agU0mrynN9WoYfDoIJrOJ/iXH5DwryFnYqS4XP26Kg86OPrZcklPvBIBKVYSNVqvL6Tl7qNVqrCsqKmbTdkEhaUkfYbOv1cbaCLAXNVVR/HtJQl5VXIO3Ru+E3sHHbAmFnCf56RKyb3cmPLjfw5bKgjS/tVWHjY6IiISkd22FmEwmmuPqdDodW2IXFJKaOB8bnZr4IRQXbITWlst01U6ehJGRfnpM1h58KY68vo4VxGKD1doXr0UhSH66hHCx/+dsePJkhL1EkiSLlJDdQdjs5mbbHjQ3N2NeqTyGExUpUAgZJ7gmny32BeOE/ffdhOX8adUmrK2qlD9L2RWzFxvc3adn01Z09XW7RAiH0WiCx73DoKm8DVt8E1DK+tVRTknRaDTY8MzMLDZNz3F5jaaKTQuCQgpy1mCTH3U08Wts6LSs3Lnawty1bFoQMr3lGjxhnGDTVpC8K4XwMZvNELwvF6XEnTjHlkgyPDwMCkUwbTj5S47l5KRAIefL9mCThZ4ODpLnasnsSy6eIoTQ/vAxClm36iibloXQUyD19IiBQhquJTgnJHkRmxbEna8slgnLNJgT4uxq3d44QYJ8FhtfxEAhXZ3XscmdHeIrULLZyNWq8tazaUHcMagL0XKvC4WQ70ucwXYmdZ/OprhjkiM1joBCJifNkJe5kjaZDuoCWyfsoO7I1Ncd0157jI1NwC7/FBQSGJDFlsiGv9YoLi6m6w3uuLy8nC2XxGq395+/S7HRZNqra6m0rC4HLYOgif4lx8X5G7AmOX4uDPTLm18T7C0Mq65fsSwIh/5fGA7R46ksDDd8oYSTx89BnfZfut1O9q1MJjPdfm970EO3Tcj2PH/6e7XmDnsb2bCrcRLcsV7v+FrHSgh5SviDu1RUrAyB1tlX+beQRO7WSUppBn7+LtyPvY0g/EbLicOH5K2gxeDvV3GRmJjElsnCSgiBDNgV5wNtms8P8l3Jn41pluoXix0ixRExcjYXh58/weOflLvYWwjCNlwoyECennzJ8vTLW7CJQXZ9WSGNjeLjsBA2Qjja27RQeTEYcsJW0G2VjJTF9McO2toYwR83OCKFbL+nlWVBwK+BdDq87Zj19jvJc0ICE4PZywUhP3BQ/94E4QdU8MM3J+HzFZH0Bw5L5wfDGp8jsHdnBuRlVdNFoqswGAwQGnoQZZDPY2NjbJksBIUQHGkwhzPX2KPkShkKSTqbwqZnLIJCptLYqVxLaNd3gN/RbSik9paWLZmxuEVIcMohKL92EVo6dNA/PABGk5F+IdXW/RBOV5XA5iP+KMNfuRvGJ8bZW8xY3CKEHcTFouGO+L7aTMNjhWw+7P9avao4BIUQpBprDznXtPd0wJmqUjiSo4R98Qq6WPSN2EIXhBFZUXRAJ9Pe1xFRIQQ5DeZwpNaLfSSFEEijxZotlfciH1lCOLjGs+HFdTgkxMv08x9BPe61Ol73uQAAAABJRU5ErkJggg==")

# with open('x.png', mode='wb') as f:
#     f.write(content)

ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(content)
print(code)

7.案例:x文街

https://i.ruanwen.la/

python 复制代码
import requests
import ddddocr

# 获得图片验证码地址
res = requests.post(url="https://api.ruanwen.la/api/auth/captcha/generate")
res_dict = res.json()

captcha_token = res_dict['data']['captcha_token']
captcha_url = res_dict['data']['src']

# 访问并获取图片验证码
res = requests.get(captcha_url)

# 识别验证码
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)

# 登录认证
res = requests.post(
    url="https://api.ruanwen.la/api/auth/authenticate",
    json={
        "mobile": "手机号",
        "device": "pc",
        "password": "密码",
        "captcha_token": captcha_token,
        "captcha": code,
        "identity": "advertiser"
    }
)

print(res.json())
# {'success': True, 'message': '验证成功', 'data': {'token': 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwczovL2FwaS5ydWFud2VuLmxhL2FwaS9hdXRoL2F1dGhlbnRpY2F0ZSIsImlhdCI6MTcwMTY1MzI2NywiZXhwIjoxNzA1MjUzMjY3LCJuYmYiOjE3MDE2NTMyNjcsImp0aSI6IjQ3bk05ejZyQ0JLV28wOEQiLCJzdWIiOjUzMzEyNTgsInBydiI6IjQxZGY4ODM0ZjFiOThmNzBlZmE2MGFhZWRlZjQyMzQxMzcwMDY5MGMifQ.XxFYMEot-DfjTUcuVuoCjcBqu3djvzJiTeJERaR95co'}, 'status': 200}
相关推荐
天雪浪子2 分钟前
Python入门教程之赋值运算符
开发语言·python
站大爷IP31 分钟前
5个技巧写出专业Python代码:从新手到进阶的实用指南
python
hrrrrb1 小时前
【Python】字符串
java·前端·python
大翻哥哥1 小时前
Python 2025:低代码开发与自动化运维的新纪元
运维·python·低代码
Source.Liu1 小时前
【Pywinauto库】12.2 pywinauto.element_info 后端内部实施模块
windows·python·自动化
Source.Liu1 小时前
【Pywinauto库】12.1 pywinauto.backend 后端内部实施模块
开发语言·windows·python·自动化
用户8356290780511 小时前
用Python高效处理Excel数据:Excel数据读取指南
后端·python
我星期八休息2 小时前
深入理解跳表(Skip List):原理、实现与应用
开发语言·数据结构·人工智能·python·算法·list
蒋星熠2 小时前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
合作小小程序员小小店2 小时前
机器学习介绍
人工智能·python·机器学习·scikit-learn·安全威胁分析