深度学习(3)-TensorFlow入门(常数张量和变量)

低阶张量操作是所有现代机器学习的底层架构,可以转化为TensorFlow API。

张量 ,包括存储神经网络状态的特殊张量(变量)​。
张量运算 ,比如加法、relu、matmul。
反向传播,一种计算数学表达式梯度的方法(在TensorFlow中通过GradientTape对象来实现)​。

然后是高阶深度学习概念。这可以转化为Keras API。

,多层可以构成模型。
损失函数 ,它定义了用于学习的反馈信号。(必须是可微的)
优化器 ,它决定学习过程如何进行。
评估模型性能的指标 ,比如精度。
训练循环,执行小批量梯度随机下降。

常数张量和变量

要使用TensorFlow,我们需要用到一些张量。创建张量需要给定初始值。例如,可以创建全1张量或全0张量(见代码清单3-1)​,也可以从随机分布中取值来创建张量(见代码清单3-2)​。

代码清单3-1 全1张量或全0张量

python 复制代码
import tensorflow as tf
x = tf.ones(shape=(2, 1))
#←----等同于np.ones(shape=(2, 1))
print(x)
x = tf.zeros(shape=(2, 1))
#←----等同于np.zeros(shape=(2, 1))
print(x)

代码清单3-2 随机张量

python 复制代码
x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
#←----从均值为0、标准差为1的正态分布中抽取的随机张量,等同于np.random.normal(size=(3, 1), loc=0., scale=1.)
# mean的中文含义就是均值

print(x)

x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
#←----从0和1之间的均匀分布中抽取的随机张量,等同于np.random.uniform(size=(3, 1), low=0., high=1.)
print(x)

NumPy数组和TensorFlow张量之间的一个重要区别是,TensorFlow张量是不可赋值的,它是常量。举例来说,在NumPy中,你可以执行以下操作,如代码清单3-3所示。

代码清单3-3 NumPy数组是可赋值的

python 复制代码
import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.

如果在TensorFlow中执行同样的操作(如代码清单3-4所示)​,那么程序会报错:EagerTensor object does not support item assignment(EagerTensor对象不支持对元素进行赋值)​。

代码清单3-4 TensorFlow张量是不可赋值的

python 复制代码
x = tf.ones(shape=(2, 2))  ←----程序会报错,因为张量是不可赋值的
x[0, 0] = 0.

要训练模型,我们需要更新其状态,而模型状态是一组张量。如果张量不可赋值,那么我们该怎么做呢?这时就需要用到变量(variable)​。tf.Variable是一个类,其作用是管理TensorFlow中的可变状态。要创建一个变量,你需要为其提供初始值,比如随机张量,如代码清单3-5所示。

python 复制代码
>>> v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
>>> print(v)
array([[-0.75133973],
       [-0.4872893 ],
       [ 1.6626885 ]], dtype=float32)

变量的状态可以通过其assign方法进行修改,如代码清单3-6所示。

代码清单3-6 为TensorFlow变量赋值

python 复制代码
>>> v.assign(tf.ones((3, 1)))
array([[1.],
       [1.],
       [1.]], dtype=float32)

这种方法也适用于变量的子集,如代码清单3-7所示。

代码清单3-7 为TensorFlow变量的子集赋值

python 复制代码
>>> v[0, 0].assign(3.)
array([[3.],
       [1.],
       [1.]], dtype=float32)

与此类似,assign_add()和assign_sub()分别等同于+=和-=的效果,如代码清单3-8所示。

代码清单3-8 使用assign_add()

python 复制代码
>>> v.assign_add(tf.ones((3, 1)))
array([[2.],
       [2.],
       [2.]], dtype=float32)

就像NumPy一样,TensorFlow提供了许多张量运算来表达数学公式。我们来看几个例子,如代码清单3-9所示。

代码清单3-9 一些基本的数学运算

python 复制代码
a = tf.ones((2, 2))
b = tf.square(a)  ←----求平方
c = tf.sqrt(a)  ←----求平方根
d = b + c  ←----两个张量(逐元素)相加
e = tf.matmul(a, b)  ←----计算两个张量的积(详见第2章)
e *= d  ←----两个张量(逐元素)相乘

重要的是,代码清单3-9中的每一个运算都是即刻执行的:任何时候都可以打印出当前结果,就像在NumPy中一样。我们称这种情况为急切执行(eager execution)​。

本文可运行全部代码集合,大家可以直接在装了tensorflow的python3环境下运行。

python 复制代码
import tensorflow as tf
x = tf.ones(shape=(2, 1))
#←----等同于np.ones(shape=(2, 1))
print(x)
x = tf.zeros(shape=(2, 1))
#←----等同于np.zeros(shape=(2, 1))
print(x)

x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
#←----从均值为0、标准差为1的正态分布中抽取的随机张量,等同于np.random.normal(size=(3, 1), loc=0., scale=1.)
# mean的中文含义就是均值

print(x)

x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
#←----从0和1之间的均匀分布中抽取的随机张量,等同于np.random.uniform(size=(3, 1), low=0., high=1.)
print(x)

import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.

print(x)

v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
print(v)

v.assign(tf.ones((3, 1)))
print(v)

v[0, 0].assign(3.)
print(v)

v.assign_add(tf.ones((3, 1)))
print(v)
相关推荐
dundunmm1 小时前
【每天一个知识点】训推一体机
人工智能·大模型·硬件·软件·训练·推理
编啊编程啊程2 小时前
JUC之AQS
java·开发语言·jvm·c++·kafka
johnny2332 小时前
OCR、文档解析工具合集(下)
人工智能
hui函数4 小时前
Flask电影投票系统全解析
后端·python·flask
Moshow郑锴4 小时前
实践题:智能客服机器人设计
人工智能·机器人·智能客服
2501_924889554 小时前
商超高峰客流统计误差↓75%!陌讯多模态融合算法在智慧零售的实战解析
大数据·人工智能·算法·计算机视觉·零售
好学且牛逼的马5 小时前
GOLANG 接口
开发语言·golang
ahauedu5 小时前
AI资深 Java 研发专家系统解析Java 中常见的 Queue实现类
java·开发语言·中间件
维基框架5 小时前
维基框架 (Wiki Framework) 1.1.0 版本发布 提供多模型AI辅助开发
人工智能
韭菜钟5 小时前
在Qt中用cmake实现类似pri文件的功能
开发语言·qt·系统架构