opencv:距离变换 cv2.distanceTransform

函数 cv2.distanceTransform() 用于计算图像中每一个非零点像素与其最近的零点像素之间的距离(Distance Transform, DT算法),输出的是保存每一个非零点与最近零点的距离信息;图像上越亮的点,代表了离零点的距离越远。
distanceTransformWithLabels 可以返回距离图和标签图。

distance, labels = cv.distanceTransformWithLabels(opn, cv.DIST_L1, 3, labelType=cv.DIST_LABEL_CCOMP)

python 复制代码
cv2.distanceTransform(
	src, 					# 二通道二值图,uint8 格式
	distanceType, 			# 距离类型
	maskSize[, 				# 距离变换掩码的大小
	dst[, 
	dstType]]				# 要生成的标签数组的类型
	) -> dst

参数

src:这是输入的8位单通道(通常是二值化的)源图像。每个像素值要么是0(背景),要么是255(前景),函数会计算每个前景像素到最近背景像素的距离。

dst:这是输出图像,包含计算出的距离信息。它是一个8位或32位浮点型的单通道图像,与src图像具有相同的尺寸。每个像素值表示该像素到最近的背景像素的距离。

labels:这是输出的二维标签数组(离散的Voronoi图)。它具有CV_32SC1(32位整数)类型,并且与src图像具有相同的尺寸。每个像素值代表了最近的背景像素或背景像素组成的连通组件的标签。

distanceType:这指定了距离类型,它定义了计算距离的方式,具体包括:

  • DIST_L1:城市街区距离,也称为曼哈顿距离。
  • DIST_L2:欧几里得距离。
  • DIST_C:棋盘距离,也称为无限范数距离。

maskSize:这是距离变换所使用的掩模大小。它定义了计算距离时考虑的邻域大小。DIST_MASK_PRECISE在此变体中不受支持。对于DIST_L1或DIST_C距离类型,参数被强制为3,因为3×3的掩模可以给出与5×5或任何更大窗口相同的距离结果。

labelType:这定义了要构建的标签数组的类型,具体包括:

  • DIST_LABEL_CCOMP:每个连通组件的背景像素都被赋予一个唯一的标签。
  • DIST_LABEL_PIXEL:每个背景像素都被赋予一个唯一的标签。

通常,为了快速、粗略的距离估算DIST_L2,使用3×3掩模。为了更精确的距离估算DIST_L2,使用5×5掩模或精确算法。需要注意的是,无论是精确算法还是近似算法,它们的时间复杂度都是与像素数量线性的。


distanceTransformWithLabels

复制代码
import cv2 as cv

# 假设 opn 是经过预处理(如形态学开运算)的二值图像
distance, labels = cv.distanceTransformWithLabels(
    opn, 
    distanceType=cv.DIST_L1,
    maskSize=3,
    labelType=cv.DIST_LABEL_CCOMP
)

经典应用

提取硬币前景

python 复制代码
path = "..." # 补充图片路径
img = cv.imread(path, cv.IMREAD_GRAYSCALE)
_ret, img2 = cv.threshold(img, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)
kernel = np.ones((3, 3), np.uint8)
opn = cv.morphologyEx(img2, cv.MORPH_OPEN, kernel)
distance = cv.distanceTransform(opn, cv.DIST_L2, 3)
_ret, result = cv.threshold(distance, 0.05 * distance.max(), 255, cv.THRESH_BINARY)


plt.subplot(221), plt.imshow(img, cmap='gray'), plt.title('org'), plt.axis('off')
plt.subplot(222), plt.imshow(opn, cmap='gray'), plt.title('opn'), plt.axis('off')
plt.subplot(223), plt.imshow(distance, cmap='gray'), plt.title('distance'), plt.axis('off')
plt.subplot(224), plt.imshow(result, cmap='gray'), plt.title('result'), plt.axis('off')

效果类似于下图

相关推荐
诗远Yolanda17 分钟前
【EI检索会议】第二届国际人工智能创新研讨会(IS-AII 2026)
图像处理·人工智能·深度学习·机器学习·计算机视觉·机器人
hero_heart1 小时前
opencv和摄影测量坐标系的转换
人工智能·opencv·计算机视觉
AI即插即用1 小时前
即插即用系列 | CMPB PMFSNet:多尺度特征自注意力网络,打破轻量级医学图像分割的性能天花板
网络·图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
微尘hjx2 小时前
【目标检测软件 02】AirsPy 目标检测系统操作指南
人工智能·测试工具·yolo·目标检测·计算机视觉·目标跟踪·qt5
CoovallyAIHub2 小时前
无人机低空视觉数据集全景解读:从单机感知到具身智能的跨越
深度学习·算法·计算机视觉
m0_692457102 小时前
ROI切割-感兴趣区域
人工智能·深度学习·计算机视觉
却道天凉_好个秋3 小时前
OpenCV(四十三):分水岭法
人工智能·opencv·计算机视觉·图像分割·分水岭法
CoovallyAIHub3 小时前
从空地对抗到空战:首个无人机间追踪百万级基准与时空语义基线MambaSTS深度解析
深度学习·算法·计算机视觉
2501_927541093 小时前
Adobe Lightroom Classic 2025 Lrc图像处理工具Mac
图像处理·macos·adobe·lightroom·照片美化
AI即插即用4 小时前
即插即用系列 | CVPR 2024 RMT:既要全局感受野,又要 CNN 的局部性?一种拥有显式空间先验的线性 Transformer
人工智能·深度学习·神经网络·目标检测·计算机视觉·cnn·transformer