机器学习基础入门——机器学习库介绍(NumPy、pandas、Matplotlib)

机器学习库介绍(NumPy、pandas、Matplotlib)

在 Python 机器学习的领域中,NumPy、pandas 和 Matplotlib 是三个不可或缺的基础库。它们分别在数值计算、数据处理与分析以及数据可视化方面发挥着关键作用,极大地提升了开发效率与数据洞察能力。接下来,我们将通过丰富的代码示例详细了解这三个库。

NumPy:高效的数值计算库

NumPy 提供了多维数组对象ndarray,以及大量用于数组操作的函数,使得数值计算变得高效且便捷。

创建数组

import numpy as np

# 创建一维数组

arr1 = np.array([1, 2, 3, 4])

print(arr1)

# 创建二维数组

arr2 = np.array([[1, 2, 3], [4, 5, 6]])

print(arr2)

# 创建全零数组

zeros_arr = np.zeros((3, 4))

print(zeros_arr)

# 创建全一数组

ones_arr = np.ones((2, 3))

print(ones_arr)

# 创建指定范围的数组

range_arr = np.arange(1, 10, 2)

print(range_arr)

数组运算

a = np.array([1, 2, 3])

b = np.array([4, 5, 6])

# 数组相加

add_result = a + b

print(add_result)

# 数组相乘

mul_result = a * b

print(mul_result)

# 数组点积

dot_result = np.dot(a, b)

print(dot_result)

数组索引与切片

arr = np.array([10, 20, 30, 40, 50])

# 访问单个元素

print(arr[2])

# 切片操作

print(arr[1:4])

# 二维数组索引与切片

two_d_arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(two_d_arr[1, 2])

print(two_d_arr[:, 1])

pandas:强大的数据处理与分析库

pandas 的核心数据结构是Series(一维带标签数组)和DataFrame(二维表格型数据结构),提供了丰富的数据处理与分析方法。

创建数据结构

import pandas as pd

# 创建Series

data = [10, 20, 30, 40]

index = ['a', 'b', 'c', 'd']

series = pd.Series(data, index=index)

print(series)

# 创建DataFrame

data = {

   'Name': ['Alice', 'Bob', 'Charlie'],

   'Age': [25, 30, 35],

   'City': ['New York', 'London', 'Paris']

}

df = pd.DataFrame(data)

print(df)

展示 pandas 中 Series 和 DataFrame 的数据结构样式

数据读取与写入

# 从CSV文件读取数据

df = pd.read_csv('data.csv')

print(df.head())

# 将数据写入CSV文件

df.to_csv('new_data.csv', index=False)

数据清洗与处理

# 处理缺失值

df = pd.DataFrame({

   'A': [1, 2, None, 4],

   'B': [5, None, 7, 8]

})

df = df.dropna()  # 删除包含缺失值的行

print(df)

# 处理重复值

df = pd.DataFrame({

   'A': [1, 2, 2, 3],

   'B': [4, 5, 5, 6]

})

df = df.drop_duplicates()

print(df)

数据筛选与统计

df = pd.DataFrame({

   'Name': ['Alice', 'Bob', 'Charlie'],

   'Age': [25, 30, 35],

   'City': ['New York', 'London', 'Paris']

})

# 筛选年龄大于30的行

filtered_df = df[df['Age'] > 30]

print(filtered_df)

# 统计各列的描述性统计信息

stats = df.describe()

print(stats)

Matplotlib:数据可视化利器

Matplotlib 可以将数据以直观的图表形式展示出来,帮助我们更好地理解数据特征与趋势。

简单绘图

import matplotlib.pyplot as plt

x = [1, 2, 3, 4]

y = [10, 12, 15, 13]

plt.plot(x, y)

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Simple Line Plot')

plt.show()

Matplotlib 绘制的简单折线图示例

绘制多种图表

# 柱状图

labels = ['A', 'B', 'C', 'D']

values = [20, 35, 15, 30]

plt.bar(labels, values)

plt.show()

Matplotlib 绘制的柱状图示例

# 散点图

x = np.random.randn(100)

y = np.random.randn(100)

plt.scatter(x, y)

plt.show()

Matplotlib 绘制的散点图示例

# 饼图

sizes = [30, 20, 15, 35]

labels = ['Apple', 'Banana', 'Orange', 'Grapes']

plt.pie(sizes, labels=labels, autopct='%1.1f%%')

plt.show()

Matplotlib 绘制的饼图示例

通过上述对 NumPy、pandas 和 Matplotlib 库的详细介绍及代码示例,相信大家对这三个机器学习常用库有了更深入的理解。在实际项目中,灵活运用这些库能够大幅提升数据处理、分析与可视化的效率,为机器学习模型的构建与优化奠定坚实基础。

相关推荐
山海青风5 小时前
从零开始玩转TensorFlow:小明的机器学习故事 5
人工智能·机器学习·tensorflow
人类群星闪耀时6 小时前
大数据平台上的机器学习模型部署:从理论到实
大数据·人工智能·机器学习
指掀涛澜天下惊6 小时前
DirectX12(D3D12)基础教程三 线性代数与3D世界空间
线性代数·算法·机器学习·3d
猎人everest7 小时前
DeepSeek基础之机器学习
人工智能·机器学习·ai
IT猿手7 小时前
2025最新高维多目标优化:基于城市场景下无人机三维路径规划的导航变量的多目标粒子群优化算法(NMOPSO),MATLAB代码
android·开发语言·算法·机器学习·matlab·无人机
羊小猪~~10 小时前
深度学习基础--ResNet网络的讲解,ResNet50的复现(pytorch)以及用复现的ResNet50做鸟类图像分类
网络·pytorch·深度学习·神经网络·机器学习·分类·resnet
Coovally AI模型快速验证11 小时前
DeepSeek引领目标检测新趋势:如何通过知识蒸馏优化模型性能
人工智能·深度学习·目标检测·机器学习·计算机视觉·目标跟踪
HHUCESTA11 小时前
2025年信息科学与工程学院科协机器学习介绍——机器学习基本模型介绍
人工智能·机器学习
B站计算机毕业设计超人12 小时前
计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+文档+PPT+讲解)
hadoop·爬虫·机器学习·spark·课程设计·数据可视化·推荐算法