ai-2、机器学习之线性回归

机器学习之线性回归

1、机器学习









2、线性回归








####所以y可以当成我们需要的结果,根据公式可以求的y一撇的值更小,所以更接近需要的结果,所以y一撇拟合性更好

2.1、梯度下降法


已知:

J = f ( ( (p ) ) ) = 3.5p 2 ^2 2-14p+14

p i _i i = 0.5 , α \alpha α = 0.01

p i + 1 _{i+1} i+1= ??

∵ \because ∵ 一元二次函数 f ( ( (p ) ) ) = ap 2 ^2 2-bp+c的幂函数求导公式

f ( ( (x ) ) ) = x a ^a a -> f ′ f\prime f′( x x x) = ax a − 1 ^{a-1} a−1

∵ \because ∵

3.5p 2 ^2 2其导数为2*3.5p ( 2 − 1 ) ^{(2-1)} (2−1) = 7p

-14p其导数为-14*p ( 1 − 1 ) ^{(1-1)} (1−1)=-14

14为常数项导数为0

∵ \because ∵ 3.5p 2 ^2 2-14p+14的导数是7p-14

∴ \therefore ∴ α \alpha α δ δ p i \frac{\delta}{\delta p_i} δpiδf ( ( (p i _{i} i ) ) ) = 7p-14

∵ \because ∵ p i _i i = 0.5

∴ \therefore ∴ 代入 α \alpha α δ δ p i \frac{\delta}{\delta p_i} δpiδf ( ( (p i _{i} i ) ) )=7*0.5-14=-10.5

∴ \therefore ∴ 损失函数J = 0.5-0.01*(-10.5) = 0.605

∴ \therefore ∴ 损失函数梯度值为0.605

相关推荐
AndrewHZ3 分钟前
【图像处理基石】如何检测到画面中的ppt并对其进行增强?
图像处理·人工智能·pytorch·opencv·目标检测·计算机视觉·图像增强
机器之心29 分钟前
「Tokens是胡扯」,Mamba作者抛出颠覆性观点,揭露Transformer深层缺陷
人工智能
机器之心40 分钟前
刚刚,马斯克发布Grok 4!全榜第一,年费飚到2万+
人工智能·grok
摆烂工程师1 小时前
教你在国内如何使用支付宝升级SuperGrok和Grok4的保姆绑卡教程
人工智能·支付宝·grok
fishjar1001 小时前
langgraph的ReAct应用
人工智能·ai
摘星编程1 小时前
智能体核心架构解析:感知-推理-行动的完整闭环
人工智能·智能体架构·感知系统·推理算法·行动控制
二二孚日1 小时前
自用华为ICT云赛道AI第一章知识点-机器学习的常见算法
人工智能·华为
聚客AI1 小时前
🎯 RAG系统工业级部署指南:六步实现<3%幻觉率的问答系统
人工智能·langchain·llm
掘金一周2 小时前
Figma Dev Mode MCP:大人,时代变了 | 掘金一周7.10
前端·人工智能·mcp