sklearn中的决策树

sklearn 中的决策树

关键概念、核心问题

  • 节点

    1. 根节点:没有进边,有出边。包含最初的,针对特征的提问。
    2. 中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。
    3. 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
    4. 子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。
  • 核心问题

    1. 如何从数据表中找出最佳节点和最佳分枝?

    2. 如何让决策树停止生长,防止过拟合?

模块sklearn.tree

  • sklearn中决策树的类都在"tree"这个模块之下。这个模块总共包含五个类:

    tree.DecisionTreeClassifier 分类树
    tree.DecisionTreeRegressor 回归树
    tree.export_graphviz 将生成的决策树导出为DOT格式,画图专用
    tree.ExtraTreeClassifier 高随机版本的分类树
    tree.ExtraTreeRegressor 高随机版本的回归树

sklearn的基本建模流程

  • sklearn建模的基本流程

    在这个流程下,分类树对应的代码是:

    python 复制代码
    from sklearn import tree                #导入需要的模块
    
    clf = tree.DecisionTreeClassifier()     #实例化
    clf = clf.fit(X_train,y_train)          #用训练集数据训练模型
    result = clf.score(X_test,y_test)       #导入测试集,从接口中调用需要的信息

sklearn .metrics方法

  • 获取sklearn.metrics中的所有评估方法

    python 复制代码
    import sklearn
    
    sorted(sklearn.metrics.SCORERS.keys())
    
    """输出"""
    ['accuracy',
     'adjusted_mutual_info_score',
     'adjusted_rand_score',
     'average_precision',
     'completeness_score',
     'explained_variance',
     'f1',
     'f1_macro',
     'f1_micro',
     'f1_samples',
     'f1_weighted',
     'fowlkes_mallows_score',
     'homogeneity_score',
     'log_loss',
     'mean_absolute_error',
     'mean_squared_error',
     'median_absolute_error',
     'mutual_info_score',
     'neg_log_loss',
     'neg_mean_absolute_error',
     'neg_mean_squared_error',
     'neg_mean_squared_log_error',
     'neg_median_absolute_error',
     'normalized_mutual_info_score',
     'precision',
     'precision_macro',
     'precision_micro',
     'precision_samples',
     'precision_weighted',
     'r2',
     'recall',
     'recall_macro',
     'recall_micro',
     'recall_samples',
     'recall_weighted',
     'roc_auc',
     'v_measure_score']

相关推荐
DO_Community33 分钟前
普通服务器都能跑:深入了解 Qwen3-Next-80B-A3B-Instruct
人工智能·开源·llm·大语言模型·qwen
WWZZ202541 分钟前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
deephub1 小时前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP1 小时前
BERT系列模型
人工智能·深度学习·bert
兰亭妙微2 小时前
ui设计公司审美积累 | 金融人工智能与用户体验 用户界面仪表盘设计
人工智能·金融·ux
AKAMAI2 小时前
安全风暴的绝地反击 :从告警地狱到智能防护
运维·人工智能·云计算
岁月宁静2 小时前
深度定制:在 Vue 3.5 应用中集成流式 AI 写作助手的实践
前端·vue.js·人工智能
galaxylove2 小时前
Gartner发布数据安全态势管理市场指南:将功能扩展到AI的特定数据安全保护是DSPM发展方向
大数据·人工智能
格林威3 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造
晓枫-迷麟4 小时前
【文献阅读】当代MOF与机器学习
人工智能·机器学习