sklearn中的决策树

sklearn 中的决策树

关键概念、核心问题

  • 节点

    1. 根节点:没有进边,有出边。包含最初的,针对特征的提问。
    2. 中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。
    3. 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
    4. 子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。
  • 核心问题

    1. 如何从数据表中找出最佳节点和最佳分枝?

    2. 如何让决策树停止生长,防止过拟合?

模块sklearn.tree

  • sklearn中决策树的类都在"tree"这个模块之下。这个模块总共包含五个类:

    tree.DecisionTreeClassifier 分类树
    tree.DecisionTreeRegressor 回归树
    tree.export_graphviz 将生成的决策树导出为DOT格式,画图专用
    tree.ExtraTreeClassifier 高随机版本的分类树
    tree.ExtraTreeRegressor 高随机版本的回归树

sklearn的基本建模流程

  • sklearn建模的基本流程

    在这个流程下,分类树对应的代码是:

    python 复制代码
    from sklearn import tree                #导入需要的模块
    
    clf = tree.DecisionTreeClassifier()     #实例化
    clf = clf.fit(X_train,y_train)          #用训练集数据训练模型
    result = clf.score(X_test,y_test)       #导入测试集,从接口中调用需要的信息

sklearn .metrics方法

  • 获取sklearn.metrics中的所有评估方法

    python 复制代码
    import sklearn
    
    sorted(sklearn.metrics.SCORERS.keys())
    
    """输出"""
    ['accuracy',
     'adjusted_mutual_info_score',
     'adjusted_rand_score',
     'average_precision',
     'completeness_score',
     'explained_variance',
     'f1',
     'f1_macro',
     'f1_micro',
     'f1_samples',
     'f1_weighted',
     'fowlkes_mallows_score',
     'homogeneity_score',
     'log_loss',
     'mean_absolute_error',
     'mean_squared_error',
     'median_absolute_error',
     'mutual_info_score',
     'neg_log_loss',
     'neg_mean_absolute_error',
     'neg_mean_squared_error',
     'neg_mean_squared_log_error',
     'neg_median_absolute_error',
     'normalized_mutual_info_score',
     'precision',
     'precision_macro',
     'precision_micro',
     'precision_samples',
     'precision_weighted',
     'r2',
     'recall',
     'recall_macro',
     'recall_micro',
     'recall_samples',
     'recall_weighted',
     'roc_auc',
     'v_measure_score']

相关推荐
lisw0513 分钟前
编程语言top5对比分析!
大数据·人工智能·程序人生·机器学习·软件工程
打码人的日常分享14 分钟前
信息化系统安全建设方案
大数据·数据库·人工智能·安全·系统安全
幂简集成22 分钟前
需求从0到1:AI提示词助力客户画像→功能脑暴→PRD→价值主张
大数据·人工智能
居然JuRan33 分钟前
DeepSeek+LoRA+FastAPI微调大模型并暴露接口给后端调用
人工智能
彭祥.35 分钟前
点云-标注-分类-航线规划软件 (一)点云自动分类
人工智能·分类·数据挖掘
丰年稻香43 分钟前
神经网络反向传播中的学习率:从理论到实践的全面解析
人工智能·神经网络·学习
北京耐用通信1 小时前
一“网”跨协议,万“设”皆可通!耐达讯自动化Modbus TCP转Profibus ,让控制无界,让能源有道。
网络·人工智能·网络协议·自动化·信息与通信
云卓SKYDROID1 小时前
无人机航电系统散热技术要点
人工智能·无人机·材质·高科技·云卓科技
斯普信专业组1 小时前
AI重构混沌工程:智能韧性守护系统高可用时代已来
人工智能·重构·混沌工程
BFT白芙堂1 小时前
【买机器人,上BFT】北京大学联合项目 论文解读 | H2R:一种用于机器人视频预训练的人机数据增强技术
人工智能·机器学习·3d·机器人·franka·leaphand·灵巧手方案