sklearn中的决策树

sklearn 中的决策树

关键概念、核心问题

  • 节点

    1. 根节点:没有进边,有出边。包含最初的,针对特征的提问。
    2. 中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。
    3. 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
    4. 子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。
  • 核心问题

    1. 如何从数据表中找出最佳节点和最佳分枝?

    2. 如何让决策树停止生长,防止过拟合?

模块sklearn.tree

  • sklearn中决策树的类都在"tree"这个模块之下。这个模块总共包含五个类:

    tree.DecisionTreeClassifier 分类树
    tree.DecisionTreeRegressor 回归树
    tree.export_graphviz 将生成的决策树导出为DOT格式,画图专用
    tree.ExtraTreeClassifier 高随机版本的分类树
    tree.ExtraTreeRegressor 高随机版本的回归树

sklearn的基本建模流程

  • sklearn建模的基本流程

    在这个流程下,分类树对应的代码是:

    python 复制代码
    from sklearn import tree                #导入需要的模块
    
    clf = tree.DecisionTreeClassifier()     #实例化
    clf = clf.fit(X_train,y_train)          #用训练集数据训练模型
    result = clf.score(X_test,y_test)       #导入测试集,从接口中调用需要的信息

sklearn .metrics方法

  • 获取sklearn.metrics中的所有评估方法

    python 复制代码
    import sklearn
    
    sorted(sklearn.metrics.SCORERS.keys())
    
    """输出"""
    ['accuracy',
     'adjusted_mutual_info_score',
     'adjusted_rand_score',
     'average_precision',
     'completeness_score',
     'explained_variance',
     'f1',
     'f1_macro',
     'f1_micro',
     'f1_samples',
     'f1_weighted',
     'fowlkes_mallows_score',
     'homogeneity_score',
     'log_loss',
     'mean_absolute_error',
     'mean_squared_error',
     'median_absolute_error',
     'mutual_info_score',
     'neg_log_loss',
     'neg_mean_absolute_error',
     'neg_mean_squared_error',
     'neg_mean_squared_log_error',
     'neg_median_absolute_error',
     'normalized_mutual_info_score',
     'precision',
     'precision_macro',
     'precision_micro',
     'precision_samples',
     'precision_weighted',
     'r2',
     'recall',
     'recall_macro',
     'recall_micro',
     'recall_samples',
     'recall_weighted',
     'roc_auc',
     'v_measure_score']

相关推荐
AI量化投资实验室4 分钟前
金融量化智能体,如何开发一个有效的策略?
人工智能·金融
九章云极AladdinEdu11 分钟前
GPU SIMT架构的极限压榨:PTX汇编指令级并行优化实践
汇编·人工智能·pytorch·python·深度学习·架构·gpu算力
数智大号12 分钟前
浪潮云边协同:赋能云计算变革的强力引擎
人工智能
胡玉洋1 小时前
从新手到高手:全面解析 AI 时代的「魔法咒语」——Prompt
人工智能·ai·prompt·transformer·协议
是店小二呀1 小时前
Trae 插件 Builder 模式:从 0 到 1 开发天气查询小程序,解锁 AI 编程新体验
人工智能·ai编程·trae
kyle~1 小时前
深度学习框架---TensorFlow概览
人工智能·深度学习·tensorflow
CodeJourney.1 小时前
ChemBlender:科研绘图创新解决方案
数据库·人工智能·信息可视化·excel
电鱼智能的电小鱼1 小时前
产线视觉检测设备技术方案:基于EFISH-SCB-RK3588/SAIL-RK3588的国产化替代赛扬N100/N150全场景技术解析
linux·人工智能·嵌入式硬件·计算机视觉·视觉检测·实时音视频
妄想成为master2 小时前
计算机视觉----基于锚点的车道线检测、从Line-CNN到CLRNet到CLRKDNet 本文所提算法Line-CNN 后续会更新以下全部算法
人工智能·计算机视觉·车道线检测
夜幕龙2 小时前
LeRobot 项目部署运行逻辑(七)—— ACT 在 Mobile ALOHA 训练与部署
人工智能·深度学习·机器学习