算法训练(leetcode)二刷第三十七天 | *300. 最长递增子序列、674. 最长连续递增序列、*718. 最长重复子数组

刷题记录

*300. 最长递增子序列

leetcode题目地址

dp数组含义:

dp[i]表示以nums[i]结尾的最长递增子序列长度,即以nums[i]结尾的子序列的长度。

j从0向i遍历,遇到num[i] > num[j], dp[i] = max(dp[j]+1, dp[i]);

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)

java 复制代码
// java
class Solution {
    public int lengthOfLIS(int[] nums) {
        int len = nums.length; 
        int[] dp = new int[len];
        int result = 1;
        // for(int i=0; i<len; i++) dp[i] = 1;
        Arrays.fill(dp, 1);
        for(int i=1; i<len; i++){
            for(int j=0; j<i; j++){
                if(nums[i] > nums[j]) dp[i] = Math.max(dp[i], dp[j]+1);
            }
            if(result < dp[i]) result = dp[i];
        }
        return result;
    }
}

674. 最长连续递增序列

leetcode题目地址

基础解法(非动规)

求最长连续递增子序列,统计子序列记录最长即可。在递增中断时,计数器要置为1而非0,因为下一个子序列从当前元素开始。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

java 复制代码
// java
class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int result = 1;
        int cnt = 1;
        int len = nums.length;
        for(int i=1; i<len; i++){
            if(nums[i]>nums[i-1]) {
                cnt++;
                if(cnt > result) result = cnt;
            }
            else cnt = 1; // 计数器置为1
            
        }
        return result;
    }
}

动态规划

dp数组含义:

dp[i]表示以nums[i]结尾的最长连续递增子序列的长度。

初始化:

每个元素本身就是一个连续递增子序列,因此初始化为1,即dp数组均初始化为1。

java 复制代码
// java
class Solution {
    public int findLengthOfLCIS(int[] nums) {

        int len = nums.length;
        int[] dp = new int[len];
        Arrays.fill(dp, 1);
        int result = 1;
        for(int i=1; i<len; i++){
            if(nums[i] > nums[i-1]) dp[i] = dp[i-1]+1;
            result = Math.max(result, dp[i]);
        }
        return result;
        
    }
}

718. 最长重复子数组

leetcode题目地址

dp数组含义:

dp[i][j]表示 以nums1[i-1]结尾的子数组A 和以 以nums2[j-1]结尾的子数组B 的最长重复子数组长度。

这里为什么要用i-1和j-1?

因为dp[i][j]的更新依赖于dp[i-1][j-1]的值。也就是说,在nums1[i-1]和nums2[j-1]相等时,更新对应位置长度需要依赖nums1[i-2]和nums2[j-2]的最长重复子数组长度。

以题目示例1举例:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]

  • 当nums1[2] == nums2[0]时,当前位置的最长重复子数组长度依赖于前面的匹配情况,前面相等的串长度为0,因此这里dp[3][1]是1。
  • 当nums1[3] == nums2[1]时,逻辑同上,dp[4][2]的更新依赖于前面的匹配情况,前面有一个元素匹配到,因此这里dp[4][2] = dp[3][1]+1 = 2
  • 当nums1[4] == nums2[2]时,逻辑同上,dp[5][3]的更新依赖于前面的匹配情况,前面有两个元素匹配到,因此这里dp[5][3] = dp[4][2]+1 = 3

到这里就可以总结出状态转移方程,dp[i][j] = dp[i-1][j-1] + 1

由于这里使用了i-1和j-1,在i和j为0时会越界。 因此整体将dp数组下标后移一位,来解决这一问题。(也可单独处理i和j为0的情况,较复杂)

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)

java 复制代码
// java
class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int len1 = nums1.length;
        int len2 = nums2.length;
        
        int[][] dp = new int[len1+1][len2+1];

        int result  = 0;
        if(nums1[0] == nums2[0]) dp[1][1] = 1;
        for (int i=1; i<=len1; i++){
            for(int j=1; j<=len2; j++){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1]+1;
                }
                result = Math.max(result, dp[i][j]);
                // System.out.print(dp[i][j] + " ");
            }
            // System.out.println();
        }
        return result;
    }
}

滚动数组

注意:

1、思路同上,只是每一层的状态是从上一层拷贝下来的,因此在遍历nums2时要从后向前,防止将前面元素在上一层的状态覆盖

2、当遇到元素不相同是要将对应位置赋值0.

java 复制代码
// java
class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int len1 = nums1.length;
        int len2 = nums2.length;
        
        int[] dp = new int[len2+1];

        int result  = 0;
        for (int i=1; i<=len1; i++){
            for(int j=len2; j>=1; j--){
                if(nums1[i-1] == nums2[j-1]){
                    dp[j] = dp[j-1]+1;
                } else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作
                result = Math.max(result, dp[j]);
                
            }
            
        }
        return result;
    }
}
相关推荐
写代码的小球3 小时前
求模运算符c
算法
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
YuTaoShao8 小时前
【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
java·算法·leetcode·职场和发展
生态遥感监测笔记8 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
Tony沈哲8 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
刘海东刘海东9 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
pumpkin845149 小时前
Rust 调用 C 函数的 FFI
c语言·算法·rust
挺菜的9 小时前
【算法刷题记录(简单题)003】统计大写字母个数(java代码实现)
java·数据结构·算法
mit6.8249 小时前
7.6 优先队列| dijkstra | hash | rust
算法