在 Centos7 上部署 ASP.NET 8.0 + YOLOv11 的踩坑实录

在 CentOS 7 上部署 ASP.NET 8.0 应用(实际上截至目前最新的稳定版本是 ASP.NET Core 6,ASP.NET 8.0 目前并不存在,可能是指 ASP.NET Core 8.0,但考虑到您的问题,我将假定您指的是 ASP.NET Core 6)并结合 YOLOv11 模型进行图像识别,确实会遇到一些技术挑战。下面我将分步骤介绍如何配置环境、安装必要的组件以及解决可能遇到的问题。

步骤 1: 安装 .NET Core

首先,确保你的 CentOS 7 系统是最新的,然后安装 .NET Core SDK。

启用 EPEL 和 .NET Core repository

sudo rpm -Uvh https://packages.microsoft.com/config/rhel/7/packages-microsoft-prod.rpm

安装 .NET Core SDK

sudo yum install -y dotnet-sdk-6.0

步骤 2: 创建 ASP.NET Core 项目

创建一个新的 ASP.NET Core Web 应用

dotnet new web -n YoloApp

cd YoloApp

步骤 3: 集成 YOLOv11

YOLOv11 主要是一个深度学习模型,通常用于图像识别。在 ASP.NET Core 中集成 YOLOv11 需要使用 ML.NET 或直接通过 HTTP API 与外部服务交互。这里我们使用 ML.NET 作为示例。

安装 ML.NET

dotnet add package Microsoft.ML

使用 ML.NET 加载模型

首先,你需要一个预训练的 YOLOv11 模型。你可以从网络上找到预训练的模型文件(例如 ONNX 格式),并将其放在你的项目中。

using Microsoft.ML;

using Microsoft.ML.OnnxRuntime;

using Microsoft.ML.OnnxRuntime.Tensors;

using System;

using System.IO;

using System.Numerics;

using System.Drawing; // 需要安装 System.Drawing.Common NuGet包

public class YoloModel

{

private readonly MLContext mlContext;

private readonly ITransformer model;

private readonly string modelPath;

public YoloModel(string modelPath)

{

this.modelPath = modelPath;

mlContext = new MLContext();

model = LoadModel(mlContext, modelPath);

}

private ITransformer LoadModel(MLContext mlContext, string modelPath)

{

var model = mlContext.Model.Load(modelPath, out var modelInputSchema);

return model;

}

public IEnumerable<Prediction> Predict(string imagePath)

{

using (var image = Image.FromFile(imagePath)) // 需要加载图像并预处理为模型输入格式

{

// 这里需要添加图像预处理的代码,例如缩放、归一化等。具体取决于模型输入要求。

// 这里仅为示例,实际处理细节需要根据YOLOv11的输入需求来定。

var imageArray = PreprocessImage(image); // 需要你自己实现此方法,转换图像数据到正确的格式和大小。

var predictionEngine = mlContext.Model.CreatePredictionEngine<InputData, Prediction>(model);

var result = predictionEngine.Predict(new InputData { ImageData = imageArray }); // 需要定义InputData和Prediction类。

return result; // 返回预测结果。

}

}

}

在上面的代码中,PreprocessImage 方法需要根据 YOLOv11 的具体输入要求来实现图像的预处理(如调整大小、归一化等)。YOLOv11 一般需要一个特定尺寸的输入图像,例如 416x416 像素。你需要使用如 OpenCV 或 System.Drawing 来实现这一功能。例如:

private byte[] PreprocessImage(Image image)

{

// 实现图像缩放和转换为字节数组的逻辑。例如使用 System.Drawing:

var resizedImage = new Bitmap(image, new Size(416, 416)); // 根据需要调整大小。

using (var ms = new MemoryStream())

{

resizedImage.Save(ms, System.Drawing.Imaging.ImageFormat.Bmp); // 可能需要调整为适合YOLOv11的格式,如JPEG或PNG。

return ms.ToArray(); // 将图像数据转换为字节数组。

}

}

相关推荐
czlczl200209251 小时前
告别 try-catch 地狱:Spring Boot 全局异常处理 (GlobalExceptionHandler) 最佳实践
java·spring boot·后端
前网易架构师-高司机1 小时前
标注好的胃病识别数据集,可识别食管炎,胃炎,胃出血,健康,息肉,胃溃疡等常见疾病,支持yolo, coco json,pascal voc xml格式的标注
深度学习·yolo·数据集·疾病·胃病·胃炎·胃部
神奇的程序员6 小时前
从已损坏的备份中拯救数据
运维·后端·前端工程化
oden7 小时前
AI服务商切换太麻烦?一个AI Gateway搞定监控、缓存和故障转移(成本降40%)
后端·openai·api
超龄超能程序猿7 小时前
YOLOv8 五大核心模型:从检测到分类的介绍
yolo·分类·数据挖掘
无能者狂怒7 小时前
[硬核] C++ YOLOv8 Onnx 加速部署(源码深度解析:动态Batch+CUDA加速+预处理对齐):从 V5 到 V8 的无缝迁移与避坑指南
yolo
李慕婉学姐8 小时前
【开题答辩过程】以《基于Android的出租车运行监测系统设计与实现》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
java·后端·vue
m0_740043738 小时前
SpringBoot05-配置文件-热加载/日志框架slf4j/接口文档工具Swagger/Knife4j
java·spring boot·后端·log4j
招风的黑耳9 小时前
我用SpringBoot撸了一个智慧水务监控平台
java·spring boot·后端
Miss_Chenzr9 小时前
Springboot优卖电商系统s7zmj(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库·spring boot·后端