kafka consumer 手动 ack

在消费 Kafka 消息时,手动确认(acknowledge)消息的消费,可以通过使用 KafkaConsumer 类中的 commitSync()commitAsync() 方法来实现。这些方法将提交当前偏移量,确保在消费者崩溃时不会重新消费已处理的消息。

以下是一个简单的手动 ack 的示例代码:

1. 配置 KafkaConsumer 和手动确认消费

java 复制代码
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Collections;
import java.util.Properties;

public class KafkaManualAckConsumer {
    public static void main(String[] args) {
        // 配置消费者的基本属性
        Properties properties = new Properties();
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); // Kafka 服务器地址
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "my-consumer-group"); // 消费者组ID
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // 消息key反序列化
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // 消息value反序列化
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); // 关闭自动提交,启用手动提交

        // 创建 KafkaConsumer
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

        // 订阅主题
        consumer.subscribe(Collections.singletonList("my-topic"));

        try {
            while (true) {
                // 拉取消息
                var records = consumer.poll(1000); // 拉取数据,等待最多1000ms

                // 处理每一条消息
                records.forEach(record -> {
                    System.out.println("Consumed message: " + record.value());

                    // 处理完消息后手动提交偏移量
                    // commitSync: 确保消息成功提交
                    consumer.commitSync();
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            // 关闭消费者
            consumer.close();
        }
    }
}

2. 代码解析

  1. 配置消费者 :
    • ENABLE_AUTO_COMMIT_CONFIG 设置为 false,禁用自动提交偏移量。这样就可以在处理完每条消息后手动提交。
  2. 消息消费与手动 ack :
    • poll(1000) 方法拉取最多 1000 毫秒内的消息。
    • commitSync() 方法用于同步提交当前的偏移量,即消费到的消息的位移,这样可以确保 Kafka 消费者确认该消息已处理。
  3. 异常处理 :
    • 异常捕获块 catch 用于处理消费过程中可能出现的任何错误,确保程序不会崩溃。
  4. 关闭消费者 :
    • finally 块中调用 consumer.close() 来关闭消费者连接。

3. 使用 commitAsync 提高性能(可选)

如果对性能要求更高,可以考虑使用 commitAsync() 方法,它不会阻塞当前线程,提交操作将在后台异步完成:

java 复制代码
consumer.commitAsync((offsets, exception) -> {
    if (exception != null) {
        System.out.println("Error committing offset: " + exception.getMessage());
    } else {
        System.out.println("Successfully committed offsets: " + offsets);
    }
});

这样你可以不阻塞线程,提高消费性能,尤其是在高吞吐量的环境中。

如果你有其他的需求或者想更细致地控制消费的细节,随时告诉我!

相关推荐
txinyu的博客3 小时前
解析业务层的key冲突问题
开发语言·c++·分布式
qq_3181215910 小时前
Java大厂面试故事:Spring Boot、微服务与AI场景深度解析
java·spring boot·redis·微服务·ai·kafka·spring security
indexsunny13 小时前
互联网大厂Java面试实战:微服务、Spring Boot与Kafka在电商场景中的应用
java·spring boot·微服务·面试·kafka·电商
yumgpkpm13 小时前
Cloudera CDH、CDP、Hadoop大数据+决策模型及其案例
大数据·hive·hadoop·分布式·spark·kafka·cloudera
IT大白14 小时前
4、Kafka原理-Consumer
分布式·kafka
独自破碎E14 小时前
怎么在RabbitMQ中配置消息的TTL?
分布式·rabbitmq
七夜zippoe15 小时前
缓存策略:从本地到分布式架构设计与Python实战
分布式·python·缓存·lfu·lru
num_killer16 小时前
小白的Spark初识(RDD)
大数据·分布式·spark
小北方城市网16 小时前
微服务架构设计实战指南:从拆分到落地,构建高可用分布式系统
java·运维·数据库·分布式·python·微服务