kafka consumer 手动 ack

在消费 Kafka 消息时,手动确认(acknowledge)消息的消费,可以通过使用 KafkaConsumer 类中的 commitSync()commitAsync() 方法来实现。这些方法将提交当前偏移量,确保在消费者崩溃时不会重新消费已处理的消息。

以下是一个简单的手动 ack 的示例代码:

1. 配置 KafkaConsumer 和手动确认消费

java 复制代码
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Collections;
import java.util.Properties;

public class KafkaManualAckConsumer {
    public static void main(String[] args) {
        // 配置消费者的基本属性
        Properties properties = new Properties();
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); // Kafka 服务器地址
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "my-consumer-group"); // 消费者组ID
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // 消息key反序列化
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // 消息value反序列化
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); // 关闭自动提交,启用手动提交

        // 创建 KafkaConsumer
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

        // 订阅主题
        consumer.subscribe(Collections.singletonList("my-topic"));

        try {
            while (true) {
                // 拉取消息
                var records = consumer.poll(1000); // 拉取数据,等待最多1000ms

                // 处理每一条消息
                records.forEach(record -> {
                    System.out.println("Consumed message: " + record.value());

                    // 处理完消息后手动提交偏移量
                    // commitSync: 确保消息成功提交
                    consumer.commitSync();
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            // 关闭消费者
            consumer.close();
        }
    }
}

2. 代码解析

  1. 配置消费者 :
    • ENABLE_AUTO_COMMIT_CONFIG 设置为 false,禁用自动提交偏移量。这样就可以在处理完每条消息后手动提交。
  2. 消息消费与手动 ack :
    • poll(1000) 方法拉取最多 1000 毫秒内的消息。
    • commitSync() 方法用于同步提交当前的偏移量,即消费到的消息的位移,这样可以确保 Kafka 消费者确认该消息已处理。
  3. 异常处理 :
    • 异常捕获块 catch 用于处理消费过程中可能出现的任何错误,确保程序不会崩溃。
  4. 关闭消费者 :
    • finally 块中调用 consumer.close() 来关闭消费者连接。

3. 使用 commitAsync 提高性能(可选)

如果对性能要求更高,可以考虑使用 commitAsync() 方法,它不会阻塞当前线程,提交操作将在后台异步完成:

java 复制代码
consumer.commitAsync((offsets, exception) -> {
    if (exception != null) {
        System.out.println("Error committing offset: " + exception.getMessage());
    } else {
        System.out.println("Successfully committed offsets: " + offsets);
    }
});

这样你可以不阻塞线程,提高消费性能,尤其是在高吞吐量的环境中。

如果你有其他的需求或者想更细致地控制消费的细节,随时告诉我!

相关推荐
ANYOLY2 小时前
分布式面试题库
分布式·面试·职场和发展
i***66507 小时前
分布式推理框架 xDit
分布式
哈哈哈笑什么8 小时前
分布式事务实战:订单服务 + 库存服务(基于本地消息表组件)
分布式·后端·rabbitmq
哈哈哈笑什么8 小时前
完整分布式事务解决方案(本地消息表 + RabbitMQ)
分布式·后端·rabbitmq
LDG_AGI8 小时前
【推荐系统】深度学习训练框架(十):PyTorch Dataset—PyTorch数据基石
人工智能·pytorch·分布式·python·深度学习·机器学习
tanxiaomi8 小时前
Redisson分布式锁 和 乐观锁的使用场景
java·分布式·mysql·面试
熊文豪11 小时前
【前瞻创想】Kurator:站在巨人肩膀上的分布式云原生创新实践
分布式·云原生·kurator
问道飞鱼12 小时前
【分布式知识】Redis-Shake 容器云部署完整指南
redis·分布式·redis-shake
milanyangbo13 小时前
从硬盘I/O到网络传输:Kafka与RocketMQ读写模型及零拷贝技术深度对比
java·网络·分布式·架构·kafka·rocketmq
GEM的左耳返14 小时前
Java面试实战:从Spring Boot到AI集成的技术深度挑战
spring boot·redis·微服务·kafka·java面试·spring ai·缓存优化