使用 DeepSeek R1 和 Ollama 开发 RAG 系统

1.概述

掌握如何借助 DeepSeek R1 与 Ollama 搭建检索增强生成(RAG)系统。本文将通过代码示例,为你提供详尽的分步指南、设置说明,分享打造智能 AI 应用的最佳实践。

2.内容

2.1 为什么选择DeepSeek R1?

在这篇文章中,我们将探究性能上可与 OpenAI 的 o1 相媲美、但成本却低 95% 的 DeepSeek R1,如何为你的检索增强生成(RAG)系统带来强大助力。我们来深入剖析为何开发者们纷纷热衷于这项技术,以及你怎样利用它构建自己的 RAG 流程。
DeepSeek R1 的 15 亿参数模型在这方面表现出色,原因如下:

  • 精准检索:每个答案仅关联 3 个文档片段
  • 严格提示:采用 "我不知道" 策略,避免模型产生幻觉
  • 本地执行:与云 API 相比,实现零延迟

环境:

组件 成本
DeepSeek R1 1.5B 免费
Ollama 免费
16GB 内存的个人电脑 0 元

2.2 构建本地 RAG 系统所需的条件

1.Ollama

Ollama 允许你在本地运行诸如 DeepSeek R1 之类的模型。

  • 下载:Ollama
  • 设置:通过终端安装并运行以下命令。
复制代码
ollama run deepseek-r1  # For the 7B model (default)  

2.DeepSeek R1 模型

DeepSeek R1 的参数范围从 1.5B 到 671B。对于轻量级 RAG 应用程序,请从1.5B 模型开始。

复制代码
ollama run deepseek-r1:1.5b 

提示:更大的模型(例如 70B)提供更好的推理能力,但需要更多的 RAM。

2.3 构建 RAG 管道

1.导入库

我们将使用:

复制代码
import streamlit as st  
from langchain_community.document_loaders import PDFPlumberLoader  
from langchain_experimental.text_splitter import SemanticChunker  
from langchain_community.embeddings import HuggingFaceEmbeddings  
from langchain_community.vectorstores import FAISS  
from langchain_community.llms import Ollama  

2.上传并处理 PDF

利用 Streamlit 的文件上传器选择本地 PDF。用于PDFPlumberLoader高效提取文本,无需手动解析。

复制代码
# Streamlit文件上传器
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")

if uploaded_file:
    # 临时保存PDF文件
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getvalue())

    # 加载PDF文本
    loader = PDFPlumberLoader("temp.pdf")
    docs = loader.load()

3.策略性地整理文件

我们打算使用递归字符文本分割器(RecursiveCharacterTextSplitter),该代码会将原始的 PDF 文本拆分成更小的片段(块)。下面我们来解释一下合理分块与不合理分块的概念:

为什么要进行语义分块呢?

语义分块能够将相关的句子归为一组(例如,"Milvus 如何存储数据" 这样的内容会保持完整),还能避免拆分表格或图表。

利用 Streamlit 的文件上传器选择本地 PDF。用于PDFPlumberLoader高效提取文本,无需手动解析。

复制代码
# 将文本拆分为语义块  
text_splitter = SemanticChunker(HuggingFaceEmbeddings())   
documents = text_splitter.split_documents(docs)

这一步通过让各文本片段稍有重叠来保留上下文信息,这有助于语言模型更准确地回答问题。小而明确的文档片段还能让搜索变得更高效、更具相关性。

4.创建可搜索的知识库

分割完成后,流程会为这些文本片段生成向量嵌入表示,并将它们存储在 FAISS 索引中。

复制代码
# Generate embeddings  
embeddings = HuggingFaceEmbeddings()  
vector_store = FAISS.from_documents(documents, embeddings)  

# Connect retriever  
retriever = vector_store.as_retriever(search_kwargs={"k": 3})  # Fetch top 3 chunks  

这一过程将文本转换为一种数值表示形式,从而使查询变得更加容易。后续的查询操作将针对该索引展开,以找出上下文最为相关的文本片段。

5.配置 DeepSeek R1

在这里,你要使用 Deepseek R1 1.5B 参数模型作为本地大语言模型(LLM)来实例化一个检索问答(RetrievalQA)链。

复制代码
llm = Ollama(model="deepseek-r1:1.5b")  # Our 1.5B parameter model  

# Craft the prompt template  
prompt = """  
1. Use ONLY the context below.  
2. If unsure, say "I don't know".  
3. Keep answers under 4 sentences.  

Context: {context}  

Question: {question}  

Answer:  
"""  
QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt)  

这个模板会迫使模型依据你 PDF 文档的内容来给出答案。通过将语言模型与和 FAISS 索引绑定的检索器相结合,任何通过该链发起的查询都会从 PDF 内容中查找相关上下文,从而让答案有原始材料作为依据。

6.组装RAG链

接下来,你可以将上传、分块和检索这几个步骤整合为一个连贯的流程。

复制代码
# Chain 1: Generate answers  
llm_chain = LLMChain(llm=llm, prompt=QA_CHAIN_PROMPT)  

# Chain 2: Combine document chunks  
document_prompt = PromptTemplate(  
    template="Context:\ncontent:{page_content}\nsource:{source}",  
    input_variables=["page_content", "source"]  
)  

# Final RAG pipeline  
qa = RetrievalQA(  
    combine_documents_chain=StuffDocumentsChain(  
        llm_chain=llm_chain,  
        document_prompt=document_prompt  
    ),  
    retriever=retriever  
)

这就是检索增强生成(RAG)设计的核心所在,它为大语言模型提供经过验证的上下文信息,而非让其单纯依赖自身的内部训练数据。

7.启动 Web 接口

最后,代码利用了 Streamlit 的文本输入和输出函数,这样用户就可以直接输入问题并立即查看回答。

复制代码
# Streamlit UI  
user_input = st.text_input("Ask your PDF a question:")  

if user_input:  
    with st.spinner("Thinking..."):  
        response = qa(user_input)["result"]  
        st.write(response)  

一旦用户输入查询内容,检索链就会找出最匹配的文本片段,将其输入到语言模型中,并显示答案。只要正确安装了langchain库,代码现在应该就能正常运行,不会再触发模块缺失的错误。

提出并提交问题,即可立即获得答案!

8.完整示例代码

复制代码
import streamlit as st
from langchain_community.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import RetrievalQA

# color palette
primary_color = "#1E90FF"
secondary_color = "#FF6347"
background_color = "#F5F5F5"
text_color = "#4561e9"

# Custom CSS
st.markdown(f"""
    <style>
    .stApp {{
        background-color: {background_color};
        color: {text_color};
    }}
    .stButton>button {{
        background-color: {primary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    .stTextInput>div>div>input {{
        border: 2px solid {primary_color};
        border-radius: 5px;
        padding: 10px;
        font-size: 16px;
    }}
    .stFileUploader>div>div>div>button {{
        background-color: {secondary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    </style>
""", unsafe_allow_html=True)

# Streamlit app title
st.title("Build a RAG System with DeepSeek R1 & Ollama")

# Load the PDF
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")

if uploaded_file is not None:
    # Save the uploaded file to a temporary location
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getvalue())

    # Load the PDF
    loader = PDFPlumberLoader("temp.pdf")
    docs = loader.load()

    # Split into chunks
    text_splitter = SemanticChunker(HuggingFaceEmbeddings())
    documents = text_splitter.split_documents(docs)

    # Instantiate the embedding model
    embedder = HuggingFaceEmbeddings()

    # Create the vector store and fill it with embeddings
    vector = FAISS.from_documents(documents, embedder)
    retriever = vector.as_retriever(search_type="similarity", search_kwargs={"k": 3})

    # Define llm
    llm = Ollama(model="deepseek-r1")

    # Define the prompt
    prompt = """
    1. Use the following pieces of context to answer the question at the end.
    2. If you don't know the answer, just say that "I don't know" but don't make up an answer on your own.\n
    3. Keep the answer crisp and limited to 3,4 sentences.

    Context: {context}

    Question: {question}

    Helpful Answer:"""

    QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt)

    llm_chain = LLMChain(
        llm=llm,
        prompt=QA_CHAIN_PROMPT,
        callbacks=None,
        verbose=True)

    document_prompt = PromptTemplate(
        input_variables=["page_content", "source"],
        template="Context:\ncontent:{page_content}\nsource:{source}",
    )

    combine_documents_chain = StuffDocumentsChain(
        llm_chain=llm_chain,
        document_variable_name="context",
        document_prompt=document_prompt,
        callbacks=None)

    qa = RetrievalQA(
        combine_documents_chain=combine_documents_chain,
        verbose=True,
        retriever=retriever,
        return_source_documents=True)

    # User input
    user_input = st.text_input("Ask a question related to the PDF :")

    # Process user input
    if user_input:
        with st.spinner("Processing..."):
            response = qa(user_input)["result"]
            st.write("Response:")
            st.write(response)
else:
    st.write("Please upload a PDF file to proceed.")

3.总结

本文详细介绍了利用 DeepSeek R1 和 Ollama 构建检索增强生成(RAG)系统的方法。首先说明了 DeepSeek R1 1.5B 模型的优势,如精准检索、避免幻觉、零延迟等。接着阐述了搭建流程,包括用 Ollama 本地运行模型、上传 PDF 文件、使用递归字符文本分割器进行语义分块、生成向量嵌入并存储于 FAISS 索引、实例化检索问答链,最后整合各步骤形成连贯流程。通过 Streamlit 实现用户输入问题并即时获取答案,且确保安装langchain库可避免错误。

4.结束语

这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

另外,博主出新书了《深入理解Hive》、同时已出版的《Kafka并不难学》和《Hadoop大数据挖掘从入门到进阶实战》也可以和新书配套使用,喜欢的朋友或同学, 可以在公告栏那里点击购买链接购买博主的书进行学习,在此感谢大家的支持。关注下面公众号,根据提示,可免费获取书籍的教学视频。

相关推荐
哥不是小萝莉3 小时前
使用 Vibe Coding 构建 AI 自动化评测系统
ai·vibe coding
SEO_juper3 小时前
别再纠结LLMs.txt了!它背后的真相与最佳使用场景,一文讲透。
开发语言·ai·php·数字营销
这儿有一堆花6 小时前
重磅推出!Google Antigravity:一次 “以 Agent 为中心 (agent-first)” 的 IDE 革命
vscode·ai·ai编程·googlecloud
互联网老欣7 小时前
2025年保姆级教程:阿里云服务器部署Dify+Ollama,打造专属AI应用平台
服务器·阿里云·ai·云计算·dify·ollama·deepseek
带刺的坐椅9 小时前
Solon AI 开发学习5 - chat - 支持哪些模型?及方言定制
java·ai·openai·solon
Learn Beyond Limits11 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
xcLeigh12 小时前
AI的提示词专栏:“Prompt Chaining”把多个 Prompt 串联成工作流
人工智能·ai·prompt·提示词·工作流
A-刘晨阳14 小时前
喂饭级 Gemini 3.0 使用教程:国内实测可用,看完就学会
ai·gemini3.0
羑悻的小杀马特16 小时前
告别限速!手把手用 PicoShare+cpolar 搭建个人极速传输隧道,内网穿透+私有云一步到位!
ai·cpolar·picoshare
后端小张17 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构