逻辑回归(Logistic)模型

1 概述

Logistic回归(逻辑回归)是基础的分类模型,将输出限定在0-1之间,表示分类的概率。在分类时,可设定阈值为0.5,概率超过0.5表示正例,小于0.5表示负例。应用场景包括医学检测(是否患病,肿瘤良性恶性)、金融(信用卡违约)、市场营销(客户是否流失)等。

2 Logistic分布

Logistic分布是一种连续型概率分布,假设随机变量X服从Logistic分布,则X的分布函数为

概率密度为

,时,称函数为标准Logistic函数,也称为Sigmoid函数。

3 Logistic回归模型

Logistic回归虽然名字叫"回归",但实际是分类算法,将线性回归(z=b0+b1x1+b2x2+...)的输出值转换为0到1之间的概率值,而转换的方法就是上文提到的Sigmoid函数,即y=Sigmoid(z)。

因此Logistic回归表示为

3.1 Odds几率

注意到y是概率,记为p,那么称odds几率为事件发生与不发生概率的比值,即

3.2 Logit对数几率

称logit为对数几率,表示为log(odds),即线性回归的部分。

因此Logistic回归模型也称为对数几率模型,也就是满足对数几率是线性回归的模型。

化简后,即可得到Logistic回归模型。

4 极大似然函数与损失函数

可以由似然函数推导损失函数,对数似然函数等于负的损失函数。

对于给定的训练集(x1,y1),(x2,y2),(x3,y3)...,其中y是0或1,

记π(x)=P(Y=1|X),则1-π(x)=P(Y=0|X),其中π(x)是要学习的目标参数

似然函数为:

似然函数是指给定参数情况下,出现这个样本的概率。可以发现当y=1时,上式为π(x);当y=0时,上式为1-π(x),符合似然函数的概念。

对数似然函数为

损失函数即为上式的相反数,通过梯度下降等方法求得参数。

在计算梯度时,y对x的梯度很容易求得,这是因为Sigmoid函数的特性是导数等于y(1-y)。

此外Sigmoid函数也常用于早期的神经网络的激活函数,在计算梯度时也可利用此性质。

5 优缺点

优点是模型简单、计算效率高、可解释性强。

缺点是线性假设过强,可能导致欠拟合。

6 参考资料

https://zhuanlan.zhihu.com/p/586453822

相关推荐
杰克尼31 分钟前
1. 两数之和 (leetcode)
数据结构·算法·leetcode
YuTaoShao1 小时前
【LeetCode 热题 100】56. 合并区间——排序+遍历
java·算法·leetcode·职场和发展
二进制person5 小时前
Java SE--方法的使用
java·开发语言·算法
OneQ6666 小时前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way6 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战8 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689769 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju9 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手10 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理