图像处理基础(8):图像的灰度直方图、直方图均衡化、直方图规定化(匹配)

本文主要介绍了灰度直方图相关的处理,包括以下几个方面的内容:

• 利用OpenCV计算图像的灰度直方图,并绘制直方图曲线

• 直方图均衡化的原理及实现

• 直方图规定化(匹配)的原理及实现

图像的灰度直方图

一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征。图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少。

图像的灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率。

不过通常会将纵坐标归一化到

区间内,也就是将灰度级出现的频率(像素个数)除以图像中像素的总数。灰度直方图的计算公式如下:

其中,

是像素的灰度级,

是具有灰度

的像素的个数,

是图像中总的像素个数。

OpenCV灰度直方图的计算

直方图的计算是很简单的,无非是遍历图像的像素,统计每个灰度级的个数。在OpenCV中封装了直方图的计算函数calcHist,为了更为通用该函数的参数有些复杂,其声明如下:

void calcHist( const Mat* images, int nimages,
                          const int* channels, InputArray mask,
                          OutputArray hist, int dims, const int* histSize,
                          const float** ranges, bool uniform = true, bool accumulate = false );

该函数能够同时计算多个图像,多个通道,不同灰度范围的灰度直方图.

其参数如下:

• images,输入图像的数组,这些图像要有相同大大小,相同的深度(CV_8U CV_16U CV_32F).

• nimages ,输入图像的个数

• channels,要计算直方图的通道个数。

• mask,可选的掩码,不使用时可设为空。要和输入图像具有相同的大小,在进行直方图计算的时候,只会统计该掩码不为0的对应像素

• hist,输出的直方图

• dims,直方图的维度

• histSize,直方图每个维度的大小

• ranges,直方图每个维度要统计的灰度级的范围

• uniform,是否进行归一化,默认为true

• accumulate,累积标志,默认值为false。

为了计算的灵活性和通用性,OpenCV的灰度直方图提供了较多的参数,但对于只是简单的计算一幅灰度图的直方图的话,又显得较为累赘。这里对calcHist进行一次封装,能够方便的得到一幅灰度图直方图。

class Histogram1D
{
private:
    int histSize[1]; // 项的数量
    float hranges[2]; // 统计像素的最大值和最小值
    const float* ranges[1];
    int channels[1]; // 仅计算一个通道

public:
    Histogram1D()
    {
        // 准备1D直方图的参数
        histSize[0] = 256;
        hranges[0] = 0.0f;
        hranges[1] = 255.0f;
        ranges[0] = hranges;
        channels[0] = 0;
    }

    MatND getHistogram(const Mat &image)
    {
        MatND hist;
        // 计算直方图
        calcHist(&image ,// 要计算图像的
            1,                // 只计算一幅图像的直方图
            channels,        // 通道数量
            Mat(),            // 不使用掩码
            hist,            // 存放直方图
            1,                // 1D直方图
            histSize,        // 统计的灰度的个数
            ranges);        // 灰度值的范围
        return hist;
    }

    Mat getHistogramImage(const Mat &image)
    {
        MatND hist = getHistogram(image);

        // 最大值,最小值
        double maxVal = 0.0f;
        double minVal = 0.0f;

        minMaxLoc(hist, &minVal, &maxVal);

        //显示直方图的图像
        Mat histImg(histSize[0], histSize[0], CV_8U, Scalar(255));

        // 设置最高点为nbins的90%
        int hpt = static_cast<int>(0.9 * histSize[0]);
        //每个条目绘制一条垂直线
        for (int h = 0; h < histSize[0]; h++)
        {
            float binVal = hist.at<float>(h);
            int intensity = static_cast<int>(binVal * hpt / maxVal);
            // 两点之间绘制一条直线
            line(histImg, Point(h, histSize[0]), Point(h, histSize[0] - intensity), Scalar::all(0));
        }
        return histImg;
    }
};

Histogram1D提供了两个方法:getHistogram返回统计直方图的数组,默认计算的灰度范围是[0,255];getHistogramImage将图像的直方图以线条的形式画出来,并返回包含直方图的图像。测试代码如下:

    Histogram1D hist;
    Mat histImg;
    histImg = hist.getHistogramImage(image);

    imshow("Image", image);
    imshow("Histogram", histImg);

其结果如下:

直方图均衡化 Histogram Equalization

假如图像的灰度分布不均匀,其灰度分布集中在较窄的范围内,使图像的细节不够清晰,对比度较低。通常采用直方图均衡化直方图规定化 两种变换,使图像的灰度范围拉开或使灰度均匀分布,从而增大反差,使图像细节清晰,以达到增强的目的。

直方图均衡化,对图像进行非线性拉伸,重新分配图像的灰度值,使一定范围内图像的灰度值大致相等。这样,原来直方图中间的峰值部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较为平坦的直方图。

均衡化算法

直方图的均衡化实际也是一种灰度的变换过程,将当前的灰度分布通过一个变换函数,变换为范围更宽、灰度分布更均匀的图像。也就是将原图像的直方图修改为在整个灰度区间内大致均匀分布,因此扩大了图像的动态范围,增强图像的对比度。通常均衡化选择的变换函数是灰度的累积概率,直方图均衡化算法的步骤:

• 计算原图像的灰度直方图

,其中

为像素总数,

为灰度级

的像素个数

• 计算原始图像的累积直方图

,其中

是目的图像的像素,

是源图像灰度为i的累积分布,L是图像中最大灰度级(灰度图为255)

其代码实现如下:

• 在上面中封装了求灰度直方图的类,这里直接应用该方法得到图像的灰度直方图;

• 将灰度直方图进行归一化,计算灰度的累积概率;

• 创建灰度变化的查找表

• 应用查找表,将原图像变换为灰度均衡的图像

具体代码如下:

void equalization_self(const Mat &src, Mat &dst)
{
    Histogram1D hist1D;
    MatND hist = hist1D.getHistogram(src);

    hist /= (src.rows * src.cols); // 对得到的灰度直方图进行归一化
    float cdf[256] = { 0 }; // 灰度的累积概率
    Mat lut(1, 256, CV_8U); // 灰度变换的查找表
    for (int i = 0; i < 256; i++)
    {
        // 计算灰度级的累积概率
        if (i == 0)
            cdf[i] = hist.at<float>(i);
        else
            cdf[i] = cdf[i - 1] + hist.at<float>(i);

        lut.at(i) = static_cast(255 * cdf[i]); // 创建灰度的查找表
    }

    LUT(src, lut, dst); // 应用查找表,进行灰度变化,得到均衡化后的图像

}

上面代码只是加深下对均衡化算法流程的理解,实际在OpenCV中也提供了灰度均衡化的函数equalizeHist,该函数的使用很简单,只有两个参数:输入图像,输出图像。下图为,上述代码计算得到的均衡化结果和调用equalizeHist的结果对比

最左边为原图像,中间为OpenCV封装函数的结果,右边为上面代码得到的结果。

直方图规定化

从上面可以看出,直方图的均衡化自动的确定了变换函数,可以很方便的得到变换后的图像,但是在有些应用中这种自动的增强并不是最好的方法。有时候,需要图像具有某一特定的直方图形状(也就是灰度分布),而不是均匀分布的直方图,这时候可以使用直方图规定化

直方图规定化,也叫做直方图匹配,用于将图像变换为某一特定的灰度分布,也就是其目的的灰度直方图是已知的。这其实和均衡化很类似,均衡化后的灰度直方图也是已知的,是一个均匀分布的直方图;而规定化后的直方图可以随意的指定,也就是在执行规定化操作时,首先要知道变换后的灰度直方图,这样才能确定变换函数。规定化操作能够有目的的增强某个灰度区间,相比于,均衡化操作,规定化多了一个输入,但是其变换后的结果也更灵活。

在理解了上述的均衡化过程后,直方图的规定化也较为简单。可以利用均衡化后的直方图作为一个中间过程,然后求取规定化的变换函数。具体步骤如下:

• 将原始图像的灰度直方图进行均衡化,得到一个变换函数

,其中s是均衡化后的像素,r是原始像素

• 对规定的直方图进行均衡化,得到一个变换函数

,其中v是均衡化后的像素,z是规定化的像素

• 上面都是对同一图像的均衡化,其结果应该是相等的,

,且

通过,均衡化作为中间结果,将得到原始像素

规定化后像素之间的映射关系。

详解规定化过程

对图像进行直方图规定化操作,原始图像的直方图和以及规定化后的直方图是已知的。假设

表示原始图像的灰度概率密度,

表示规定化图像的灰度概率密度(r和z分别是原始图像的灰度级,规定化后图像的灰度级)。

• 对原始图像进行均衡化操作,则有

• 对规定化的直方图进行均衡化操作,则

• 由于是对同一图像的均衡化操作,所以有

• 规定化操作的目的就是找到原始图像的像素

到规定化后图像像素的

之间的一个映射。有了上一步的等式后,可以得到

,因此要想找到

相对应的

只需要在

进行迭代,找到使式子

的绝对值最小即可。

• 上述描述只是理论的推导过程,在实际的计算过程中,不需要做两次的均衡化操作,具体的推导过程如下:$$

相关推荐
sinat_2869451913 分钟前
一种简单的ReAct agent演示
人工智能·chatgpt·prompt
Cherry Xie23 分钟前
阿里开源正式开园文生视频、图生视频模型-通义万相 WanX2.1
人工智能·音视频
热爱编程的OP28 分钟前
第九章:多模态大语言模型
人工智能·语言模型·自然语言处理
zxfeng~37 分钟前
深度学习之“雅可比矩阵与黑塞矩阵”
人工智能·python·深度学习·神经网络
MuLogin_Browser41 分钟前
矩阵营销的 AI 进化:DeepSeek 如何助力批量运营账号?
人工智能·线性代数·矩阵
AllYoung_36241 分钟前
WebUI 部署 Ollama 可视化对话界面
人工智能·深度学习·算法·语言模型·aigc·llama
yuweififi42 分钟前
pytorch基础-比较矩阵是否相等
人工智能·pytorch
洛北辰南1 小时前
【论文学习】DeepSeek-V3 总结
人工智能·论文笔记
俊哥V1 小时前
[思考记录.AI]面对当下大模型,自己的一些感受
人工智能·ai
正宗咸豆花1 小时前
释放 Cursor 的全部潜能:快速生成智能 Cursor Rules
人工智能