Opencv 图像形态学操作

3.1 形态学-腐蚀操作

python 复制代码
img = cv2.imread('CSDN.png')
cv2.imshow('CSDN', img)
cv2.waitKey(0)
cv2.destroyAllWindows

如果腐蚀核的覆盖区域内的所有像素值都满足条件(阈值),则中心像素的值保持不变;如果有任何像素值不满足条件,则中心像素的值被设置为0(黑色)。

python 复制代码
kernal = np.ones((3, 3), np.unit8)
# 传入3×3的腐蚀核,iterration表示腐蚀的操作次数
erosion = cv2.erode(img, kernal, iteration = 2)
cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

多余的细线条没有了。

python 复制代码
pie = cv2.imread('pie.png')
cv2.imshow('pie', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()

接下来看随着迭代次数变多图像有什么变化

python 复制代码
kernel = np.ones((30, 30), np.unit8)
erosion_1 = cv2.erode(pie, kernel, iterations = 1)
erosion_2 = cv2.erode(pie, kernel, iterations = 2)
erosion_3 = cv2.erode(pie, kernel, iterations = 3)
res = np.hstack((erosion_1, erosion_2, erosion_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像越来越瘦

3.2 形态学-膨胀操作

python 复制代码
kernal = np.ones((3, 3), np.unit8)
dilation = cv2.dilate(erosion, kernal, iternations = 2)

cv2.imshow('dilation', dilation)
cv2.waitKey(0)
cv2.destroyAllWindows

可以看出腐蚀后的线条变细之后,膨胀操作又将线条变粗了

所以我们可以将图像中的噪声点和比结构元素小而且多余需要去除的部分先用腐蚀操作去除,然后再将我们需要的部分用膨胀操作变大。

python 复制代码
pie = cv2.imread('pie.png')

kernel = np.ones((30, 30), np.unit8)
dilate_1 = cv2.dilate(pie, kernel, iterations = 1)
dilate_2 = cv2.dilate(pie, kernel, iterations = 2)
dilate_3 = cv2.dilate(pie, kernel, iterations = 3)
res = np.hstack((dilate_1, dilate_2, dilate_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

可以看出随膨胀次数操作变多,这个圆越来越肿。

3.3 开运算与闭运算

开运算:先腐蚀,再膨胀

用于去除小亮物体

python 复制代码
img = cv2.imread('CSDN.png')
kernel = np.ones((5, 5), np.unit8)
opening = cv2.morphologyEX(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()

闭运算:先膨胀,再腐蚀

用于去除小暗物体

python 复制代码
img = cv2.imread('CSDN2.png')
cv2.imshow('CSDN2', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
img = cv2.imread('CSDN2.png')

kernel = np.ones((5, 5), np.unit8)
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.4 梯度运算

梯度运算的结果等同于膨胀操作和腐蚀操作结果的差值,这个操作可以用来检测图像中的物体边缘。

python 复制代码
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernal)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.5 礼帽与黑帽

礼帽 = 原始输入 - 开运算结果

python 复制代码
img = cv2.imread('CSDN.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

礼帽操作的效果是突出显示那些比结构元素小的物体

开运算之后,原本比结构元素小的物体处理掉,而比结构元素大的物体则几乎保持不变.

用原始输入减去开运算结果后,剩下的是比结构元素小的物体。

黑帽 = 闭运算 - 原始输入

python 复制代码
img = cv2.imread('CSDN2.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
img = cv2.imread('CSDN.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

黑帽操作的效果是用于突出显示比结构元素小的暗物体或凹陷区域。

闭运算之后,原本比结构元素小的物体再膨胀过程中被完全填充,在腐蚀过程也无法恢复。比结构元素大的物体在膨胀又腐蚀后变化不大。

用闭运算结果减去原始输入后,留下来的则是原本的小暗物体的轮廓,只不过变成了亮的小物体。

相关推荐
前端双越老师6 分钟前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子23 分钟前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger40 分钟前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼42 分钟前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339862 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室3 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI3 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20063 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3934 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水8 小时前
Unreal Engine 5中的AI知识
人工智能