Opencv 图像形态学操作

3.1 形态学-腐蚀操作

python 复制代码
img = cv2.imread('CSDN.png')
cv2.imshow('CSDN', img)
cv2.waitKey(0)
cv2.destroyAllWindows

如果腐蚀核的覆盖区域内的所有像素值都满足条件(阈值),则中心像素的值保持不变;如果有任何像素值不满足条件,则中心像素的值被设置为0(黑色)。

python 复制代码
kernal = np.ones((3, 3), np.unit8)
# 传入3×3的腐蚀核,iterration表示腐蚀的操作次数
erosion = cv2.erode(img, kernal, iteration = 2)
cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

多余的细线条没有了。

python 复制代码
pie = cv2.imread('pie.png')
cv2.imshow('pie', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()

接下来看随着迭代次数变多图像有什么变化

python 复制代码
kernel = np.ones((30, 30), np.unit8)
erosion_1 = cv2.erode(pie, kernel, iterations = 1)
erosion_2 = cv2.erode(pie, kernel, iterations = 2)
erosion_3 = cv2.erode(pie, kernel, iterations = 3)
res = np.hstack((erosion_1, erosion_2, erosion_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像越来越瘦

3.2 形态学-膨胀操作

python 复制代码
kernal = np.ones((3, 3), np.unit8)
dilation = cv2.dilate(erosion, kernal, iternations = 2)

cv2.imshow('dilation', dilation)
cv2.waitKey(0)
cv2.destroyAllWindows

可以看出腐蚀后的线条变细之后,膨胀操作又将线条变粗了

所以我们可以将图像中的噪声点和比结构元素小而且多余需要去除的部分先用腐蚀操作去除,然后再将我们需要的部分用膨胀操作变大。

python 复制代码
pie = cv2.imread('pie.png')

kernel = np.ones((30, 30), np.unit8)
dilate_1 = cv2.dilate(pie, kernel, iterations = 1)
dilate_2 = cv2.dilate(pie, kernel, iterations = 2)
dilate_3 = cv2.dilate(pie, kernel, iterations = 3)
res = np.hstack((dilate_1, dilate_2, dilate_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

可以看出随膨胀次数操作变多,这个圆越来越肿。

3.3 开运算与闭运算

开运算:先腐蚀,再膨胀

用于去除小亮物体

python 复制代码
img = cv2.imread('CSDN.png')
kernel = np.ones((5, 5), np.unit8)
opening = cv2.morphologyEX(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()

闭运算:先膨胀,再腐蚀

用于去除小暗物体

python 复制代码
img = cv2.imread('CSDN2.png')
cv2.imshow('CSDN2', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
img = cv2.imread('CSDN2.png')

kernel = np.ones((5, 5), np.unit8)
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.4 梯度运算

梯度运算的结果等同于膨胀操作和腐蚀操作结果的差值,这个操作可以用来检测图像中的物体边缘。

python 复制代码
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernal)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.5 礼帽与黑帽

礼帽 = 原始输入 - 开运算结果

python 复制代码
img = cv2.imread('CSDN.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

礼帽操作的效果是突出显示那些比结构元素小的物体

开运算之后,原本比结构元素小的物体处理掉,而比结构元素大的物体则几乎保持不变.

用原始输入减去开运算结果后,剩下的是比结构元素小的物体。

黑帽 = 闭运算 - 原始输入

python 复制代码
img = cv2.imread('CSDN2.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
img = cv2.imread('CSDN.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

黑帽操作的效果是用于突出显示比结构元素小的暗物体或凹陷区域。

闭运算之后,原本比结构元素小的物体再膨胀过程中被完全填充,在腐蚀过程也无法恢复。比结构元素大的物体在膨胀又腐蚀后变化不大。

用闭运算结果减去原始输入后,留下来的则是原本的小暗物体的轮廓,只不过变成了亮的小物体。

相关推荐
阿坡RPA3 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049933 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心3 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c6 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2056 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清6 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh7 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员7 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物7 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技