Opencv 图像形态学操作

3.1 形态学-腐蚀操作

python 复制代码
img = cv2.imread('CSDN.png')
cv2.imshow('CSDN', img)
cv2.waitKey(0)
cv2.destroyAllWindows

如果腐蚀核的覆盖区域内的所有像素值都满足条件(阈值),则中心像素的值保持不变;如果有任何像素值不满足条件,则中心像素的值被设置为0(黑色)。

python 复制代码
kernal = np.ones((3, 3), np.unit8)
# 传入3×3的腐蚀核,iterration表示腐蚀的操作次数
erosion = cv2.erode(img, kernal, iteration = 2)
cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

多余的细线条没有了。

python 复制代码
pie = cv2.imread('pie.png')
cv2.imshow('pie', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()

接下来看随着迭代次数变多图像有什么变化

python 复制代码
kernel = np.ones((30, 30), np.unit8)
erosion_1 = cv2.erode(pie, kernel, iterations = 1)
erosion_2 = cv2.erode(pie, kernel, iterations = 2)
erosion_3 = cv2.erode(pie, kernel, iterations = 3)
res = np.hstack((erosion_1, erosion_2, erosion_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像越来越瘦

3.2 形态学-膨胀操作

python 复制代码
kernal = np.ones((3, 3), np.unit8)
dilation = cv2.dilate(erosion, kernal, iternations = 2)

cv2.imshow('dilation', dilation)
cv2.waitKey(0)
cv2.destroyAllWindows

可以看出腐蚀后的线条变细之后,膨胀操作又将线条变粗了

所以我们可以将图像中的噪声点和比结构元素小而且多余需要去除的部分先用腐蚀操作去除,然后再将我们需要的部分用膨胀操作变大。

python 复制代码
pie = cv2.imread('pie.png')

kernel = np.ones((30, 30), np.unit8)
dilate_1 = cv2.dilate(pie, kernel, iterations = 1)
dilate_2 = cv2.dilate(pie, kernel, iterations = 2)
dilate_3 = cv2.dilate(pie, kernel, iterations = 3)
res = np.hstack((dilate_1, dilate_2, dilate_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

可以看出随膨胀次数操作变多,这个圆越来越肿。

3.3 开运算与闭运算

开运算:先腐蚀,再膨胀

用于去除小亮物体

python 复制代码
img = cv2.imread('CSDN.png')
kernel = np.ones((5, 5), np.unit8)
opening = cv2.morphologyEX(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()

闭运算:先膨胀,再腐蚀

用于去除小暗物体

python 复制代码
img = cv2.imread('CSDN2.png')
cv2.imshow('CSDN2', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
img = cv2.imread('CSDN2.png')

kernel = np.ones((5, 5), np.unit8)
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.4 梯度运算

梯度运算的结果等同于膨胀操作和腐蚀操作结果的差值,这个操作可以用来检测图像中的物体边缘。

python 复制代码
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernal)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.5 礼帽与黑帽

礼帽 = 原始输入 - 开运算结果

python 复制代码
img = cv2.imread('CSDN.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

礼帽操作的效果是突出显示那些比结构元素小的物体

开运算之后,原本比结构元素小的物体处理掉,而比结构元素大的物体则几乎保持不变.

用原始输入减去开运算结果后,剩下的是比结构元素小的物体。

黑帽 = 闭运算 - 原始输入

python 复制代码
img = cv2.imread('CSDN2.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
img = cv2.imread('CSDN.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

黑帽操作的效果是用于突出显示比结构元素小的暗物体或凹陷区域。

闭运算之后,原本比结构元素小的物体再膨胀过程中被完全填充,在腐蚀过程也无法恢复。比结构元素大的物体在膨胀又腐蚀后变化不大。

用闭运算结果减去原始输入后,留下来的则是原本的小暗物体的轮廓,只不过变成了亮的小物体。

相关推荐
拓端研究室6 分钟前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI10 分钟前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日200615 分钟前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3931 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水5 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室6 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿6 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫6 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手7 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记7 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型