【搜广推算法的力量:如何用数据驱动用户体验与商业价值?】

文章目录

  • 搜广推算法基本概念
    • 常见算法及介绍
        1. 搜索算法
        • PageRank
        • TF-IDF
        1. 广告算法
        • CTR预估(点击率预估)
        • GSP(广义第二价格拍卖)
        1. 推荐算法
        • 协同过滤
        • 矩阵分解
    • 总结

搜广推算法基本概念

搜广推算法是指在搜索、广告和推荐系统中应用的算法,旨在提升用户体验和系统效率。以下是相关概念:

  1. 搜索算法:用于从海量数据中快速找到用户所需信息。
  2. 广告算法:通过分析用户行为,精准投放广告,提升点击率和转化率。
  3. 推荐算法:根据用户兴趣和行为,推荐个性化内容,增强用户粘性。

常见算法及介绍

1. 搜索算法

PageRank
  • 介绍:Google的核心算法,通过网页链接关系评估页面重要性。
  • 实现 :基于图的迭代计算,公式为:
    P R ( A ) = ( 1 − d ) + d ∑ i = 1 n P R ( T i ) C ( T i ) PR(A) = (1-d) + d \sum_{i=1}^{n} \frac{PR(T_i)}{C(T_i)} PR(A)=(1−d)+di=1∑nC(Ti)PR(Ti)
    其中, P R ( A ) PR(A) PR(A) 是页面A的PageRank值, T i T_i Ti 是链接到A的页面, C ( T i ) C(T_i) C(Ti) 是 T i T_i Ti 的出链数, d d d 是阻尼系数。
TF-IDF
  • 介绍:用于评估词在文档中的重要性,TF表示词频,IDF表示逆文档频率。
  • 实现 :公式为:
    TF-IDF ( t , d ) = TF ( t , d ) × IDF ( t ) \text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t) TF-IDF(t,d)=TF(t,d)×IDF(t)
    其中, TF ( t , d ) \text{TF}(t, d) TF(t,d) 是词t在文档d中的频率, IDF ( t ) \text{IDF}(t) IDF(t) 是词t的逆文档频率。

2. 广告算法

CTR预估(点击率预估)
  • 介绍:预测用户点击广告的概率,常用逻辑回归、GBDT等模型。
  • 实现 :逻辑回归公式为:
    P ( y = 1 ∣ x ) = 1 1 + e − ( w T x + b ) P(y=1|x) = \frac{1}{1 + e^{-(w^T x + b)}} P(y=1∣x)=1+e−(wTx+b)1
    其中, x x x 是特征向量, w w w 是权重, b b b 是偏置。
GSP(广义第二价格拍卖)
  • 介绍:广告拍卖机制,广告主按点击出价,实际支付为下一位广告主的出价。
  • 实现:按出价排序,广告位依次分配,实际支付为下一位的出价。

3. 推荐算法

协同过滤
  • 介绍:基于用户行为推荐,分为基于用户和基于物品的协同过滤。
  • 实现 :基于用户的协同过滤公式为:
    KaTeX parse error: Expected '}', got 'EOF' at end of input: ... \bar{r}v)^2}
    其中, u u u 和 v v v 是用户, I u v I
    {uv} Iuv 是他们共同评分的物品集合, r u i r_{ui} rui 是用户u对物品i的评分, r ˉ u \bar{r}_u rˉu 是用户u的平均评分。
矩阵分解
  • 介绍:将用户-物品评分矩阵分解为用户矩阵和物品矩阵,预测未评分项。
  • 实现 :目标函数为:
    min ⁡ U , V ∑ ( i , j ) ∈ Ω ( r i j − u i T v j ) 2 + λ ( ∥ U ∥ F 2 + ∥ V ∥ F 2 ) \min_{U, V} \sum_{(i,j) \in \Omega} (r_{ij} - u_i^T v_j)^2 + \lambda (\|U\|_F^2 + \|V\|_F^2) U,Vmin(i,j)∈Ω∑(rij−uiTvj)2+λ(∥U∥F2+∥V∥F2)
    其中, U U U 和 V V V 是用户和物品矩阵, Ω \Omega Ω 是已知评分集合, λ \lambda λ 是正则化参数。

总结

搜广推算法涵盖搜索、广告和推荐系统,常见算法包括PageRank、TF-IDF、CTR预估、GSP、协同过滤和矩阵分解等。每种算法有特定的实现方式,广泛应用于实际场景。

相关推荐
~~李木子~~26 分钟前
基于 MovieLens-100K 数据集的推荐算法设计与实现
算法·机器学习·推荐算法
LaughingZhu3 小时前
Product Hunt 每日热榜 | 2025-12-17
大数据·人工智能·经验分享·搜索引擎·产品运营
GEO AI搜索优化助手3 小时前
未来图景:信息传播链的生态重构与长期影响
人工智能·搜索引擎·重构·生成式引擎优化·ai优化·geo搜索优化
AI算法蒋同学7 小时前
02.AIGC初学者指南-生成式人工智能和大型语言模型简介
人工智能·搜索引擎·语言模型
每日学点SEO1 天前
「网站新页面冲进前10名成功率下降69%」:2025 年SEO竞争格局分析
大数据·数据库·人工智能·搜索引擎·chatgpt
Elastic 中国社区官方博客1 天前
开始使用 Elastic Agent Builder 和 Strands Agents SDK
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索
老陈头聊SEO1 天前
生成引擎优化(GEO)如何提升内容创作效率与增强用户体验
其他·搜索引擎·seo优化
weixin_395448911 天前
“一次性拼接 RM+FSD 做单次前向/反向”的方案
前端·javascript·推荐算法
长相忆兮长相忆1 天前
【推荐系统】基于GE架构的重排
深度学习·神经网络·推荐算法
真上帝的左手1 天前
13. 搜索引擎-ES-ES集群
elasticsearch·搜索引擎·jenkins