MR-图解

1、不是所有的MR都适合combine

1.1、map端统计出了不同班级的每个学生的年龄

如:(class1, 14)表示class1班的一个学生的年龄是14岁。

第一个map任务:

java 复制代码
class1 14
class1 15
class1 16
class2 10

第二个map任务:

java 复制代码
class1 16
class2 10
class2 11

平均年龄:

java 复制代码
class1: ((14+15+16)+16)/4 = 61/4 = 15.25
class2: (10+10+11)/3 = 10.333
1.2、若强制使用combine的话。

第一个map任务:

java 复制代码
class1 14
class1 15
class1 16
class2 10
==>平均值:
class1: (14+15+16)/3 = 15
class2: 10/1 = 10

第二个map任务:

java 复制代码
class1 16
class2 10
class2 11
==>平均值:
class1: 16/1 = 16
class2: (10+11)/2  =10.5

平均年龄:

java 复制代码
==>汇总求平均值:
class1: (15+16)/2  =15.5
class2: (10+10.5) = 10.25

比对结果:

java 复制代码
class1: 15.25不等于15.5
class2: 10.333不等于10.25
1.3、结论:并非所有MR都适合combine操作

2、reduce端merge 排序 分组

第一个map输出

复制代码
(hadoop,1)
(hadoop,1)
(hive,1)

第二个map输出

复制代码
(hadoop,1)
(hive,1)

第三个map输出

复制代码
(hadoop,1)
(hive,1)
(hive,1)
-->merge
复制代码
(hadoop,1)
(hadoop,1)
(hive,1)
(hadoop,1)
(hive,1)
(hadoop,1)
(hive,1)
(hive,1)
-->排序
复制代码
(hadoop,1)
(hadoop,1)
(hadoop,1)
(hadoop,1)

(hive,1)
(hive,1)
(hive,1)
(hive,1)
-->分组
复制代码
一组
(hadoop,1)
(hadoop,1)
(hadoop,1)
(hadoop,1)
二组
(hive,1)
(hive,1)
(hive,1)
(hive,1)
-->每组调用一次reduce方法
复制代码
(hadoop,1)
(hadoop,1)  -> hadoop, Iterable(1,1,1,1) -> reduce(hadoop, Iterable(1,1,1,1), context){...}
(hadoop,1)
(hadoop,1)

⭐️3、wordcount+combine过程

⭐️4、wordcount shuffle

5、grouping

6、自定义OutputFormat

相关推荐
一个天蝎座 白勺 程序猿15 小时前
大数据(4.2)Hive核心操作实战指南:表创建、数据加载与分区/分桶设计深度解析
大数据·hive·hadoop
一个天蝎座 白勺 程序猿17 小时前
大数据(4.3)Hive基础查询完全指南:从SELECT到复杂查询的10大核心技巧
数据仓库·hive·hadoop
宅小海2 天前
14 配置Hadoop集群-配置历史和日志服务
linux·服务器·hadoop
珹洺2 天前
Java-servlet(十)使用过滤器,请求调度程序和Servlet线程(附带图谱表格更好对比理解)
java·开发语言·前端·hive·hadoop·servlet·html
2401_871290582 天前
Hadoop 集群的常用命令
大数据·hadoop·分布式
只因只因爆2 天前
mapreduce的工作原理
大数据·linux·hadoop·mapreduce
lix的小鱼2 天前
hadoop集群的常用命令
大数据·linux·hadoop
shouwangV62 天前
hive执行CTAS报错“Hive Runtime Error while processing row”
数据仓库·hive·hadoop
洋芋爱吃芋头2 天前
1. hadoop 集群的常用命令
hadoop
一个天蝎座 白勺 程序猿2 天前
大数据(4.1)Hive架构设计与企业级实战:从内核原理到性能巅峰优化,打造高效数据仓库
数据仓库·hive·hadoop