C语言递归——青蛙跳台阶问题和汉诺塔问题

一、青蛙跳台阶问题

题目描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上n级台阶总共有多少种跳法。

问题分析:

青蛙跳台阶问题可以分成n个子问题。假设青蛙要跳上n级台阶,那么它的最后一步有两种选择:
1.从第n-1级台阶跳1步到达第n级
2.从第n-2级台阶跳2步到达第n级

所以,跳到第n级台阶的跳法数等于跳到第n-1级台阶的跳法数 加上跳到第n-2级台阶的跳法数 ,用数学函数表示为**F(n) = F(n-1) + F(n-2)**

边界条件:
1.当n=1时,青蛙只能跳1步,因此只有一种跳法: F(n) = 1
2.当n=2时,青蛙有两种跳法:连续跳两步,或者直接跳两步,有两种跳法: F(n) = 2

1.递归解法:

优点:简单直观,易理解

缺点:效率极低,不适合较大的n,时间复杂度为2^n

c 复制代码
#include <stdio.h>
int F(int n)
{
	if (n <= 0)
	{
		return 0;
	}
	if (n == 1)
	{
		return 1;
	}
	if (n == 2)
	{
		return 2;
	}
	return F(n - 1) + F(n - 2);
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int count = F(n);
	printf("%d\n", count);
	return 0;
}

2.迭代(循环)方法

优点:避免重复计算,效率高

c 复制代码
#include <stdio.h>
int F(int n)
{
	if (n <= 0)
	{
		return 0;
	}
	if (n == 1)
	{
		return 1;
	}
	if (n == 2)
	{
		return 2;
	}

	int a = 1;
	int b = 2;
	int c = 0;
	for (int j = 3; j <= n; j++)
	{
		c = a + b;
		a = b;
		b = c;
	}
	return c;
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int count = F(n);
	printf("%d\n", count);
	return 0;
}

二、汉诺塔问题

题目描述:

有三根柱子,分别为A、B和C。在A柱子上有n个大小不一的盘子,从上到下依次增大。目标是将所有盘子从A柱子移动到C柱子上,移动过程中需要满足以下规则:

•每次只能移动一个盘子

•每次移动时,盘子必须从顶部移动到另一根柱子的顶部

•任何时候,较大的盘子不能放在较小的盘子上面

解题思路:

假设我们需要将n 个盘子从A柱子移动到C柱子,可以分解为以下步骤:

•将上面的n-1个盘子从A柱子移动到B柱子(借助C柱子)

•将第n个盘子(最大的盘子)从A柱子直接移动到C柱子

•再将B柱子上的n-1个盘子移动到C柱子(借助A柱子)

递归公式:

• 如果只有一个盘子(n=1),直接将盘子从A柱子移动到C柱子

• 如果有n个盘子(n>1),按照上述三步递归解决
终止条件:

• 当n=1时,直接移动盘子,无需进一步分解

1.解法

优点:简洁易懂

缺点:计算较大的数,时间会很久

c 复制代码
#include <stdio.h>
void hanoi(int n, char A, char B, char C)
{
	if (n == 1)
	{
		printf("将第%d个盘子从%c柱子移动到%c柱子\n", n, A, C);
		return;
	}
	//将n-1个盘子从A移动到B,借助C
	hanoi(n - 1, A, C, B);

	//将n-1个盘子从A移动到C
	printf("将第%d个盘子从%c柱子移动到%c柱子\n", n, A, C);

	//将n-1个盘子从B移动到C,借助A
	hanoi(n - 1, B, A, C);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	hanoi(n, 'A', 'B', 'C');
	return 0;
}
相关推荐
算AI8 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
我不会编程5558 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
李少兄8 小时前
Unirest:优雅的Java HTTP客户端库
java·开发语言·http
无名之逆9 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust
似水এ᭄往昔9 小时前
【C语言】文件操作
c语言·开发语言
啊喜拔牙9 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
xixixin_9 小时前
为什么 js 对象中引用本地图片需要写 require 或 import
开发语言·前端·javascript
W_chuanqi10 小时前
安装 Microsoft Visual C++ Build Tools
开发语言·c++·microsoft
anlogic10 小时前
Java基础 4.3
java·开发语言
hyshhhh10 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉