目标检测——数据处理

1. Mosaic 数据增强

Mosaic 数据增强步骤:

(1). 选择四个图像:

  • 从数据集中随机选择四张图像 。这四张图像是用来组合成一个新图像的基础

(2) 确定拼接位置:

  • 设计一个新的画布(输入size的2倍),在指定范围内找出一个随机点(如图1所示: 范围在320 ~ 960之间)
  • 每一张小图按照长边resize到输入的输入size的大小,然后依次拼接到对应位置

(3) 调整图像大小和裁剪:

  • 对每个选定的图像进行缩放和裁剪,使其适合分配给它的区域。 这样可以确保每个图像都能很好地适应其对应的象限,并且不会超出边界。

(4) 调整标签:

  • 如果你在进行目标检测任务,还需要调整每个图像中的目标框(bounding boxes)的坐标,使其适应新的复合图像的位置。具体来说,需要根据图像在复合图像中的位置重新计算目标框的位置和尺寸。

(5) 应用其他增强操作(可选):

  • 生成的复合图像上可以进一步应用其他常见的数据增强技术 ,如颜色抖动(color jittering)、水平翻转(horizontal flipping)、旋转(rotation)等,以进一步丰富数据集。

2. CutMix 数据增强

CutMix一种数据增强技术,旨在通过将两张图像的一部分区域进行混合,并相应地调整标签,来增加训练样本的多样性。这种方法不仅能够提高模型的泛化能力,还能有效防止过拟合。

CutMix 数据增强的具体步骤:

(1) 选择两张图像和标签:

  • 从数据集中随机选择两张图像 image1image2 及其对应的标签 label1label2

(2) 确定混合区域:

  • image1 中随机选择一个矩形区域 (x, y, w, h),其中 (x, y) 是矩形的左上角坐标,(w, h)是矩形的宽度和高度。

  • 通常使用均匀分布来随机选择这些参数,例如:

    python 复制代码
    lam = np.random.beta(beta, beta)  # Beta分布参数,用于控制混合比例
    x = np.random.randint(0, image1.shape[1])
    y = np.random.randint(0, image1.shape[0])
    w = int(image1.shape[1] * np.sqrt(1 - lam))
    h = int(image1.shape[0] * np.sqrt(1 - lam))

(3) 裁剪并混合区域:

  • 将 image2 中对应区域的图像裁剪出来,并将其粘贴到 image1 的选定区域中。

  • 这一步可以通过简单的图像操作完成:

    python 复制代码
    def cutmix(image1, image2, x, y, w, h):
        mixed_image = image1.copy()
        mixed_image[y:y+h, x:x+w] = image2[y:y+h, x:x+w]
        return mixed_image

(4) 调整标签:

对于分类任务,标签可以根据混合区域的比例进行线性插值 。假设 lam 是混合区域占总面积的比例,则新图像的标签可以表示为:

python 复制代码
new_label = lam * label1 + (1 - lam) * label2

对于目标检测任务,需要调整每个目标框的位置和标签,以反映混合后的图像内容。具体来说:

  • 如果目标框完全位于混合区域之外,则保留原标签
  • 如果目标框部分位于混合区域之内,则需要根据交集区域调整目标框的位置和大小
相关推荐
小鸡吃米…4 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫5 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)5 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan5 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维5 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS5 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd5 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟6 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然6 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~6 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1