机器学习——使用分类特征的一种独热编码,

在我们目前看到的例子中,每个特性只能具有两个可能的值中的一个,耳朵形状不是尖的就是软的,脸型不是圆就是不圆,胡须不是存在就是不存在,但是如果特性可以具有两个以上的离散值呢?

如何使用一个热编码来解决这样的特性?

下图是我们宠物收养中心申请的新培训集,所有的数据都是一样的,除了耳形特征有尖软之外还有椭圆形,所以这个特征仍然是一个分类值特征,但它可以有三个可能的值,而不仅仅是两个可能的值,这意味着当你在这个功能上分裂时,最终创建了数据的三个子集,最后为这棵树建造了三个分支。

使用一个热编码,它可以具有两个以上的值,可以呈现三种可能的值中的任何一种,相反,我们将创建三个新功能,一个特点是这种动物有尖耳朵吗,第二是它的耳朵是不是松软的,第三个是它有椭圆形的耳朵吗,所以对于第一个例子,而以前的耳朵形状是尖的,相反,这种动物有一个尖耳特征的价值,尖耳为1,软耳和椭圆形为0,第二个没有尖耳朵,所以为0,也没有松耳朵,所以也为0,但它确实有椭圆形的耳朵,为1,以此类推,对于数据集中的其余示例,不是一个特性具有三个可能的值,我们现在构建了三个特征,它们中的每一个只能具有两个可能的值中的一个,更详细的说,要么是1,要么是0.

如果一个分类特征可以具有k个可能的值,在我们的例子中,k=3,然后我们将通过创建k个二进制特性来替换它,它只能接受0或1的值,在这三个特征中,看其中的任意一行,恰好其中一个值等于1,这就是特征构造方法命名为一个热编码的原因。因为其中一个特性总是具有价值,那是最热门的功能,因此有了热编码的名字,有了这些功能的选择,其中每个特征只具有两个可能的值中的一个,所以我们之前看到的决策树学习算法将应用于这些数据,没有进一步的修改,只是作为一个旁白,使用一个热编码来编码分类特征的想法也适用于训练神经网络,尤其是把脸型用1和0代替圆和不圆,圆代表1,不圆代表0,以此类推,同时有胡须代表1,0代表没胡子,我们已经把所有的分类特征,我们有三个耳朵形状的可能性,两个脸型,一个胡须,并将其编码为这五个特征的列表,三个来自耳形的一个热编码,一个是脸型,一个是胡须,现在这五个特征的列表也可以被输入神经网络或者用逻辑回归来训练猫分类器,因此,一种热门编码技术不仅适用于决策树学习,但也允许使用1和0编码分类特性,所以它也可以作为神经网络的输入,希望数字作为输入,所以这就是热编码,可以让决策树具有两个以上离散值的特性,也可以把它应用到神经网络上或线性回归或逻辑回归训练,但是特征是可以具有任何价值的数字。

相关推荐
澳鹏Appen1 小时前
数据集月度精选 | 高质量具身智能数据集:打开机器人“感知-决策-动作”闭环的钥匙
人工智能·机器人·具身智能
q***71013 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
极限实验室3 小时前
Coco AI 参选 Gitee 2025 最受欢迎开源软件!您的每一票,都是对中国开源的硬核支持
人工智能·开源
secondyoung3 小时前
Mermaid流程图高效转换为图片方案
c语言·人工智能·windows·vscode·python·docker·流程图
iFlow_AI3 小时前
iFlow CLI Hooks 「从入门到实战」应用指南
开发语言·前端·javascript·人工智能·ai·iflow·iflow cli
Shang180989357263 小时前
THC63LVD1027D一款10位双链路LVDS信号中继器芯片,支持WUXGA分辨率视频数据传输THC63LVD1027支持30位数据通道方案
人工智能·考研·信息与通信·信号处理·thc63lvd1027d·thc63lvd1027
飞哥数智坊3 小时前
项目太大,AI无法理解?试试这3种思路
人工智能·ai编程
桜吹雪4 小时前
手搓一个简易Agent
前端·人工智能·后端
数字时代全景窗4 小时前
从App时代到智能体时代,如何打破“三堵墙”
人工智能·软件工程
weixin_469163694 小时前
金融科技项目管理方式在AI加持下发展方向之,需求分析精准化减少业务与技术偏差
人工智能·科技·金融·项目管理·需求管理