【漫话机器学习系列】116.矩阵(Matrices)

矩阵(Matrices)详解

1. 引言

矩阵(Matrix)是数学中一种重要的数据结构,广泛应用于线性代数、计算机科学、物理、机器学习、计算机视觉等多个领域。它是一种二维的数值数组 ,由行(row)和列(column)组成,矩阵的每个元素被称为标量(scalar)

本文将详细介绍矩阵的基本概念、表示方法、运算及其应用。


2. 矩阵的表示

一个矩阵通常表示为:

其中:

  • A 是矩阵的名称。
  • 代表矩阵中的一个元素,位于第 i 行,第 j 列。
  • m 表示矩阵的行数(Row)。
  • n 表示矩阵的列数(Column)。
  • 该矩阵称为 m × n 维矩阵(m 行 n 列的矩阵)。

例如:

这个矩阵有 2 行 3 列 ,即 2 × 3 矩阵


3. 矩阵的类型

(1) 方阵(Square Matrix)

如果矩阵的行数和列数相等,即 m = n,则称其为方阵。例如:

这是一个 3 × 3 的方阵。

(2) 零矩阵(Zero Matrix)

所有元素都是 0 的矩阵称为零矩阵。例如:

(3) 单位矩阵(Identity Matrix)

单位矩阵是一个方阵,主对角线上元素全为 1,其余元素全为 0。例如:

单位矩阵在矩阵运算中类似于数值 1,满足 AI = A。

(4) 对角矩阵(Diagonal Matrix)

如果一个方阵除了主对角线上的元素外,其余所有元素均为 0,则称为对角矩阵。例如:

(5) 列矩阵和行矩阵

  • 列矩阵(Column Matrix) :只有一列的矩阵,如:

    这个是一个 3 × 1 矩阵。

  • 行矩阵(Row Matrix) :只有一行的矩阵,如:

    这个是一个 1 × 3 矩阵。


4. 矩阵的基本运算

(1) 矩阵加法

如果两个矩阵的维度相同,则可以进行加法运算,按元素相加:


(2) 矩阵数乘

矩阵的所有元素乘以一个数(标量):

(3) 矩阵乘法

矩阵 A 和 B 可以相乘的条件是:A 的列数等于 B 的行数

设:

计算 A × B:


5. 矩阵的应用

矩阵在许多领域都有应用,包括:

  1. 计算机科学:图像处理、图形变换、机器学习等。
  2. 工程:控制系统、信号处理等。
  3. 经济学:市场模型、线性规划等。
  4. 物理学:量子力学、力学计算等。

6. 结论

矩阵是数学中的重要工具,能够高效地表示和处理数据。通过理解矩阵的结构、运算和应用,可以更深入地理解现代数学和计算机科学中的许多算法和理论。

如果你对矩阵的应用感兴趣,可以进一步学习 线性代数 ,了解矩阵的 特征值、特征向量、逆矩阵 等高级概念!

相关推荐
弥金4 分钟前
LangChain基础
人工智能·后端
不摸鱼15 分钟前
创业找不到方向?不妨从行业卧底开始 | 不摸鱼的独立开发者日报(第66期)
人工智能·开源·资讯
ReinaXue15 分钟前
大模型【进阶】(五):低秩适配矩阵LORA的深度认识
人工智能·深度学习·神经网络·语言模型·自然语言处理·transformer
牵牛老人16 分钟前
OpenCV学习探秘之二 :数字图像的矩阵原理,OpenCV图像类与常用函数接口说明,及其常见操作核心技术详解
opencv·学习·矩阵
人生都在赌18 分钟前
AI Agent从工具到生态的秘密:我们踩过的坑和3个月实践教训
人工智能·ci/cd·devops
北极的树22 分钟前
大模型上下文工程之Prefix Caching技术详解
人工智能·ai编程
奇舞精选23 分钟前
prompt的参数调优入门指南 - 小白也能轻松掌握
人工智能·aigc
DisonTangor24 分钟前
商汤InternLM发布最先进的开源多模态推理模型——Intern-S1
人工智能·深度学习·开源·aigc
wayman_he_何大民24 分钟前
RAG系统架构:让AI学会"查资料"的魔法
人工智能
泽安AI研习社26 分钟前
Coze 开源了,送上保姆级私有化部署方案【建议收藏】
人工智能