【数据挖掘]Ndarray数组的创建

在 NumPy 中,ndarray(N-dimensional array)是最核心的数据结构,创建 ndarray 数组的方式有多种,主要包括以下几类:

目录

[1. 通过列表或元组创建](#1. 通过列表或元组创建)

[2. 使用 NumPy 内置的创建函数](#2. 使用 NumPy 内置的创建函数)

(1)创建全零数组:np.zeros()

(2)创建全一数组:np.ones()

(3)创建指定数值数组:np.full()

[(4)创建单位矩阵(对角线为 1):np.eye()](#(4)创建单位矩阵(对角线为 1):np.eye())

[3. 使用随机数创建数组](#3. 使用随机数创建数组)

[(1)生成均匀分布随机数(0~1 之间):np.random.rand()](#(1)生成均匀分布随机数(0~1 之间):np.random.rand())

(2)生成标准正态分布随机数:np.random.randn()

(3)生成指定范围的随机整数:np.random.randint()

[4. 使用 arange() 和 linspace() 生成序列数组](#4. 使用 arange() 和 linspace() 生成序列数组)

[(1)np.arange(start, stop, step) 生成等差数列](#(1)np.arange(start, stop, step) 生成等差数列)

[(2)np.linspace(start, stop, num) 生成等间距数列](#(2)np.linspace(start, stop, num) 生成等间距数列)



1. 通过列表或元组创建

复制代码
import numpy as np

# 通过列表创建
arr1 = np.array([1, 2, 3, 4, 5])
print(arr1)

# 通过元组创建
arr2 = np.array((1, 2, 3, 4, 5))
print(arr2)

2. 使用 NumPy 内置的创建函数

(1)创建全零数组:np.zeros()
复制代码
arr = np.zeros((3, 4))  # 创建一个 3x4 的全零数组
print(arr)
(2)创建全一数组:np.ones()
复制代码
arr = np.ones((2, 3))  # 创建一个 2x3 的全一数组
print(arr)
(3)创建指定数值数组:np.full()
复制代码
arr = np.full((2, 2), 7)  # 创建一个 2x2 的数组,所有元素均为 7
print(arr)
(4)创建单位矩阵(对角线为 1):np.eye()
复制代码
arr = np.eye(3)  # 创建一个 3x3 的单位矩阵
print(arr)

3. 使用随机数创建数组

(1)生成均匀分布随机数(0~1 之间):np.random.rand()
复制代码
arr = np.random.rand(2, 3)  # 生成一个 2x3 的随机数组
print(arr)
(2)生成标准正态分布随机数:np.random.randn()
复制代码
arr = np.random.randn(3, 3)  # 生成一个 3x3 的标准正态分布数组
print(arr)
(3)生成指定范围的随机整数:np.random.randint()
复制代码
arr = np.random.randint(1, 10, (2, 3))  # 生成一个 2x3 的数组,元素值在 [1,10) 之间
print(arr)

4. 使用 arange()linspace() 生成序列数组

(1)np.arange(start, stop, step) 生成等差数列
复制代码
arr = np.arange(0, 10, 2)  # 生成 0 到 10(不含 10),步长为 2 的数组
print(arr)
(2)np.linspace(start, stop, num) 生成等间距数列
复制代码
arr = np.linspace(0, 10, 5)  # 生成 0 到 10 的 5 个等间距数
print(arr)

这些方法可以满足大多数 ndarray 数组的创建需求,根据不同场景选择合适的方法。🚀

相关推荐
cnxy188几秒前
Python Web开发新时代:FastAPI vs Django性能对比
前端·python·fastapi
weixin_462446236 分钟前
【原创实践】Windows 和 Linux 下使用 Python 3.10 搭建 PaddleOCRVL 识别图片并100%还原表格
linux·windows·python·飞浆
ID_180079054736 分钟前
除了Python,还有哪些语言可以解析淘宝商品详情API返回的JSON数据?
开发语言·python·json
rgb2gray9 分钟前
论文深度解析:基于大语言模型的城市公园多维度感知解码与公平性提升
大数据·人工智能·机器学习·语言模型·自然语言处理·数据分析·可解释
草莓熊Lotso9 分钟前
Qt 信号与槽深度解析:从基础用法到高级实战(含 Lambda 表达式)
java·运维·开发语言·c++·人工智能·qt·数据挖掘
Irene.ll1 小时前
DAY23
python
专注于大数据技术栈1 小时前
java学习--Collection的迭代器
java·python·学习
梨落秋霜9 小时前
Python入门篇【文件处理】
android·java·python
Java 码农9 小时前
RabbitMQ集群部署方案及配置指南03
java·python·rabbitmq
Learn Beyond Limits9 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp