《代码随想录第五十五天》------图论基础、深度搜索理论基础、所有可达路径、广度搜索理论基础
本篇文章的所有内容仅基于C++撰写。
1. 图论基础
1.1 概念
- 种类
分为有向图和无向图,无权值图和加权图 - 度
有几条便连接节点,该节点就有几度
有向图中,出度是节点指向其他节点的边个数;入度是其他节点指向该节点的边个数 - 连通性
节点互相到达称为连通图,节点不能互相到达称为非连通图。
在有向图中,所有节点可以相互到达被称为强连通图。
图中的极大连通子图被成为该图的一个连通分量。
在有向图中,极大强连通子图被称为该图的强连通分量。 - 图的构造
一般使用邻接表、邻接矩阵 或者用类来表示。最简单的方式是直接存储所有边。
- 邻接矩阵
邻接矩阵 使用 二维数组来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。例如: grid[2][5] = 6,表示 节点 2 连接 节点5 为有向图,节点2 指向 节点5,边的权值为6。
在一个 n (节点数)为8 的图中,就需要申请 88 这么大的空间。
图中有一条双向边,即:grid[2][5] = 6,grid[5][2] = 6
这种表达方式(邻接矩阵) 在 边少,节点多的情况下,会导致申请过大的二维数组,造成空间浪费。
而且在寻找节点连接情况的时候,需要遍历整个矩阵,即 nn 的时间复杂度,同样造成时间浪费。
优点:
表达方式简单,易于理解
检查任意两个顶点间是否存在边的操作非常快
适合稠密图,在边数接近顶点数平方的图中,邻接矩阵是一种空间效率较高的表示方法。
缺点:
遇到稀疏图,会导致申请过大的二维数组造成空间浪费 且遍历 边 的时候需要遍历整个n * n矩阵,造成时间浪费。
- 邻接表
邻接表 使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。
这里表达的图是:
节点1 指向 节点3 和 节点5
节点2 指向 节点4、节点3、节点5
节点3 指向 节点4
节点4指向节点1
有多少边 邻接表才会申请多少个对应的链表节点。
从图中可以直观看出 使用 数组 + 链表 来表达 边的连接情况 。
优点:
对于稀疏图的存储,只需要存储边,空间利用率高
遍历节点连接情况相对容易
缺点:
检查任意两个节点间是否存在边,效率相对低,需要 O(V)时间,V表示某节点连接其他节点的数量。
实现相对复杂,不易理解
1.2 遍历方式
图的遍历方式基本是两大类:
- 深度优先搜索(dfs)
- 广度优先搜索(bfs)
在讲解二叉树章节的时候,其实就已经讲过这两种遍历方式。
- 二叉树的递归遍历,是dfs 在二叉树上的遍历方式。
- 二叉树的层序遍历,是bfs 在二叉树上的遍历方式。
dfs 和 bfs 一种搜索算法,可以在不同的数据结构上进行搜索,在二叉树章节里是在二叉树这样的数据结构上搜索。而在图论章节,则是在图(邻接表或邻接矩阵)上进行搜索。
2. 深度搜索理论基础
2.1 概念
- dfs是可一个方向去搜,不到黄河不回头,直到遇到绝境了,搜不下去了,再换方向(换方向的过程就涉及到了回溯)。
- bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。
总之,dfs的关键就两点: - 搜索方向,是认准一个方向搜,直到碰壁之后再换方向
- 换方向是撤销原路径,改为节点链接的下一个路径,回溯的过程。
2.2 算法框架
dfs的算法和回溯的框架很像,以下是对比:
回溯:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
dfs:
void dfs(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本节点所连接的其他节点) {
处理节点;
dfs(图,选择的节点); // 递归
回溯,撤销处理结果
}
}
深搜三部曲如下:
-
确认递归函数,参数
void dfs(参数)
通常我们递归的时候,我们递归搜索需要了解哪些参数,其实也可以在写递归函数的时候,发现需要什么参数,再去补充就可以。一般情况,深搜需要 二维数组数组结构保存所有路径,需要一维数组保存单一路径,这种保存结果的数组,我们可以定义一个全局变量,避免让我们的函数参数过多。例如这样:
vector<vector<int>> result; // 保存符合条件的所有路径
vector<int> path; // 起点到终点的路径
void dfs (图,目前搜索的节点)
-
确认终止条件
终止条件很重要,很多同学写dfs的时候,之所以容易死循环,栈溢出等等这些问题,都是因为终止条件没有想清楚。if (终止条件) {
存放结果;
return;
}
终止添加不仅是结束本层递归,同时也是我们收获结果的时候。另外,其实很多dfs写法,没有写终止条件,其实终止条件 隐藏在下面dfs递归的逻辑里,也就是不符合条件,直接不会向下递归。
-
处理目前搜索节点出发的路径
一般这里就是一个for循环的操作,去遍历 目前搜索节点 所能到的所有节点。for (选择:本节点所连接的其他节点) {
处理节点;
dfs(图,选择的节点); // 递归
回溯,撤销处理结果
}
3. 所有可达路径
3.1 题目
【题目描述】
给定一个有 n 个节点的有向无环图,节点编号从 1 到 n。请编写一个程序,找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。
【输入描述】
第一行包含两个整数 N,M,表示图中拥有 N 个节点,M 条边
后续 M 行,每行包含两个整数 s 和 t,表示图中的 s 节点与 t 节点中有一条路径
【输出描述】
输出所有的可达路径,路径中所有节点的后面跟一个空格,每条路径独占一行,存在多条路径,路径输出的顺序可任意。
如果不存在任何一条路径,则输出 -1。
注意输出的序列中,最后一个节点后面没有空格! 例如正确的答案是 1 3 5,而不是 1 3 5, 5后面没有空格!
【输入示例】
5 5
1 3
3 5
1 2
2 4
4 5
【输出示例】
1 3 5
1 2 4 5
数据范围:
图中不存在自环
图中不存在平行边
1 <= N <= 100
1 <= M <= 500
3.2 分析
这道题是模板题。没说是不是稀疏图,所以用邻接矩阵和邻接表都可以做。
深搜三部曲来分析题目:
-
确认递归函数,参数
首先我们dfs函数一定要存一个图,用来遍历的,需要存一个目前我们遍历的节点,定义为x。还需要存一个n,表示终点,我们遍历的时候,用来判断当 x==n 时候 标明找到了终点。(其实在递归函数的参数 不容易一开始就确定了,一般是在写函数体的时候发现缺什么,参加就补什么)
至于 单一路径 和 路径集合 可以放在全局变量,那么代码是这样的:vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 0节点到终点的路径
// x:目前遍历的节点
// graph:存当前的图
// n:终点
void dfs (const vector<vector<int>>& graph, int x, int n) { -
确认终止条件
什么时候我们就找到一条路径了?当目前遍历的节点 为 最后一个节点 n 的时候 就找到了一条 从出发点到终止点的路径。// 当前遍历的节点x 到达节点n
if (x == n) { // 找到符合条件的一条路径
result.push_back(path);
return;
} -
处理目前搜索节点出发的路径
接下来是走 当前遍历节点x的下一个节点。首先是要找到 x节点指向了哪些节点呢? 遍历方式是这样的:for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x指向的节点,就是节点i
}
}
接下来就是将 选中的x所指向的节点,加入到 单一路径来。
path.push_back(i); // 遍历到的节点加入到路径中来
然后进入下一层递归
dfs(graph, i, n); // 进入下一层递归
最后就是回溯的过程,撤销本次添加节点的操作。
该过程整体代码:
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x链接的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
3.3 代码
- 邻接矩阵
cpp
#include <iostream>
#include <vector>
using namespace std;
vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 1节点到终点的路径
void dfs (const vector<vector<int>>& graph, int x, int n) {
// 当前遍历的节点x 到达节点n
if (x == n) { // 找到符合条件的一条路径
result.push_back(path);
return;
}
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x链接的节点
path.push_back(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.pop_back(); // 回溯,撤销本节点
}
}
}
int main() {
int n, m, s, t;
cin >> n >> m;
// 节点编号从1到n,所以申请 n+1 这么大的数组
vector<vector<int>> graph(n + 1, vector<int>(n + 1, 0));
while (m--) {
cin >> s >> t;
// 使用邻接矩阵 表示无线图,1 表示 s 与 t 是相连的
graph[s][t] = 1;
}
path.push_back(1); // 无论什么路径已经是从0节点出发
dfs(graph, 1, n); // 开始遍历
// 输出结果
if (result.size() == 0) cout << -1 << endl;
for (const vector<int> &pa : result) {
for (int i = 0; i < pa.size() - 1; i++) {
cout << pa[i] << " ";
}
cout << pa[pa.size() - 1] << endl;
}
}
-
邻接表
#include <iostream>
#include <vector>
#include <list>
using namespace std;vector<vector<int>> result; // 收集符合条件的路径
vector<int> path; // 1节点到终点的路径void dfs (const vector<list<int>>& graph, int x, int n) {
if (x == n) { // 找到符合条件的一条路径 result.push_back(path); return; } for (int i : graph[x]) { // 找到 x指向的节点 path.push_back(i); // 遍历到的节点加入到路径中来 dfs(graph, i, n); // 进入下一层递归 path.pop_back(); // 回溯,撤销本节点 }
}
int main() {
int n, m, s, t;
cin >> n >> m;// 节点编号从1到n,所以申请 n+1 这么大的数组 vector<list<int>> graph(n + 1); // 邻接表 while (m--) { cin >> s >> t; // 使用邻接表 ,表示 s -> t 是相连的 graph[s].push_back(t); } path.push_back(1); // 无论什么路径已经是从0节点出发 dfs(graph, 1, n); // 开始遍历 // 输出结果 if (result.size() == 0) cout << -1 << endl; for (const vector<int> &pa : result) { for (int i = 0; i < pa.size() - 1; i++) { cout << pa[i] << " "; } cout << pa[pa.size() - 1] << endl; }
}
4. 广度搜索理论基础
4.1 概念
广搜的搜索方式就适合于解决两个点之间的最短路径问题。因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。
当然,也有一些问题是广搜 和 深搜都可以解决的,例如岛屿问题,这类问题的特征就是不涉及具体的遍历方式,只要能把相邻且相同属性的节点标记上就行。
广搜仅仅需要一个容器就能实现,能保存我们要遍历过的元素就可以,那么用队列,还是用栈,甚至用数组,都是可以的。
- 用队列的话,就是保证每一圈都是一个方向去转,例如统一顺时针或者逆时针。因为队列是先进先出,加入元素和弹出元素的顺序是没有改变的。
- 如果用栈的话,就是第一圈顺时针遍历,第二圈逆时针遍历,第三圈有顺时针遍历。因为栈是先进后出,加入元素和弹出元素的顺序改变了。
4.2 算法框架
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {
queue<pair<int, int>> que; // 定义队列
que.push({x, y}); // 起始节点加入队列
visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点
while(!que.empty()) { // 开始遍历队列里的元素
pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素
int curx = cur.first;
int cury = cur.second; // 当前节点坐标
for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 坐标越界了,直接跳过
if (!visited[nextx][nexty]) { // 如果节点没被访问过
que.push({nextx, nexty}); // 队列添加该节点为下一轮要遍历的节点
visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问
}
}
}
}