深度学习---卷积神经网络

一、卷积尺寸计算公式

二、池化

池化分为最大池化和平均池化

最常用的就是最大池化,可以认为最大池化不需要引入计算,而平均池化需要引出计算(计算平均数)

每种池化还分为Pooling和AdaptiveAvgPool

Pooling(2)就是每2*2个格子pooling成一个格子,相当于减半

AdaptiveAvgPool(7)就是无论刚开始输入特征图有多大,最后只能变为7*7的特征图

最后,进行拉直,还是进行Linear操作

三、计算Loss值

我们计算Loss值,需要计算出来的概率分布,而经过卷积池化,Linear后得到的y'(上图)不是概率分布,因此我们进行y'=Softmax(y)操作,得到真正的y'的概率分布。

得到y'我们就可以 计算Loss,这里就引入了 CrossEntropy Loss: 交叉熵损失,在使用中,我们可以不用关注计算过程,我们只需调用CrossEntropyLoss即可得到Loss

得到Loss之后,我们就可以使用PyTorch中的loss.backward()方法来自动计算梯度,计算每个卷积核的梯度,更新模型。

相关推荐
catchadmin2 小时前
PHP 快速集成 ChatGPT 用 AI 让你的应用更聪明
人工智能·后端·chatgpt·php
编程武士5 小时前
从50ms到30ms:YOLOv10部署中图像预处理的性能优化实践
人工智能·python·yolo·性能优化
max5006006 小时前
基于Meta Llama的二语习得学习者行为预测计算模型
人工智能·算法·机器学习·分类·数据挖掘·llama
mCell6 小时前
长期以来我对 LLM 的误解
深度学习·llm·ollama
月疯7 小时前
OPENCV摄像头读取视频
人工智能·opencv·音视频
极客天成ScaleFlash7 小时前
极客天成让统一存储从云原生‘进化’到 AI 原生: 不是版本升级,而是基因重组
人工智能·云原生
王哥儿聊AI7 小时前
Lynx:新一代个性化视频生成模型,单图即可生成视频,重新定义身份一致性与视觉质量
人工智能·算法·安全·机器学习·音视频·软件工程
_pinnacle_7 小时前
打开神经网络的黑箱(三) 卷积神经网络(CNN)的模型逻辑
人工智能·神经网络·cnn·黑箱·卷积网络
Ada's7 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
张较瘦_8 小时前
[论文阅读] 人工智能 + 软件工程 | 从“人工扒日志”到“AI自动诊断”:LogCoT框架的3大核心创新
论文阅读·人工智能·软件工程