深度学习---卷积神经网络

一、卷积尺寸计算公式

二、池化

池化分为最大池化和平均池化

最常用的就是最大池化,可以认为最大池化不需要引入计算,而平均池化需要引出计算(计算平均数)

每种池化还分为Pooling和AdaptiveAvgPool

Pooling(2)就是每2*2个格子pooling成一个格子,相当于减半

AdaptiveAvgPool(7)就是无论刚开始输入特征图有多大,最后只能变为7*7的特征图

最后,进行拉直,还是进行Linear操作

三、计算Loss值

我们计算Loss值,需要计算出来的概率分布,而经过卷积池化,Linear后得到的y'(上图)不是概率分布,因此我们进行y'=Softmax(y)操作,得到真正的y'的概率分布。

得到y'我们就可以 计算Loss,这里就引入了 CrossEntropy Loss: 交叉熵损失,在使用中,我们可以不用关注计算过程,我们只需调用CrossEntropyLoss即可得到Loss

得到Loss之后,我们就可以使用PyTorch中的loss.backward()方法来自动计算梯度,计算每个卷积核的梯度,更新模型。

相关推荐
居7然1 小时前
解锁AI大模型:Prompt工程全面解析
人工智能·prompt·提示词
思通数据5 小时前
AI视频监控:重构安防行业智能化新生态
人工智能·安全·目标检测·机器学习·计算机视觉·重构·数据挖掘
萤丰信息5 小时前
智慧工地从工具叠加到全要素重构的核心引擎
java·大数据·人工智能·重构·智慧城市·智慧工地
riveting5 小时前
明远智睿SSD2351:以技术突破重构嵌入式市场格局
大数据·人工智能·重构·边缘计算·嵌入式开发·智能交通
计算机sci论文精选6 小时前
CVPR2025敲门砖丨机器人结合多模态+时空Transformer直冲高分,让你的论文不再灌水
人工智能·科技·深度学习·机器人·transformer·cvpr
XIAO·宝7 小时前
机器学习----绪论
人工智能·机器学习
41号学员7 小时前
机器学习绪论
人工智能·机器学习
华清远见成都中心7 小时前
基于深度学习的异常检测算法在时间序列数据中的应用
人工智能·深度学习·算法
一车小面包8 小时前
机器学习中数据集的划分难点及实现
人工智能·深度学习·机器学习
R-G-B10 小时前
【P27 4-8】OpenCV Python——Mat类、深拷贝(clone、copyTo、copy)、浅拷贝,原理讲解与示例代码
人工智能·python·opencv·浅拷贝·深拷贝·opencv python·mat类