深度学习---卷积神经网络

一、卷积尺寸计算公式

二、池化

池化分为最大池化和平均池化

最常用的就是最大池化,可以认为最大池化不需要引入计算,而平均池化需要引出计算(计算平均数)

每种池化还分为Pooling和AdaptiveAvgPool

Pooling(2)就是每2*2个格子pooling成一个格子,相当于减半

AdaptiveAvgPool(7)就是无论刚开始输入特征图有多大,最后只能变为7*7的特征图

最后,进行拉直,还是进行Linear操作

三、计算Loss值

我们计算Loss值,需要计算出来的概率分布,而经过卷积池化,Linear后得到的y'(上图)不是概率分布,因此我们进行y'=Softmax(y)操作,得到真正的y'的概率分布。

得到y'我们就可以 计算Loss,这里就引入了 CrossEntropy Loss: 交叉熵损失,在使用中,我们可以不用关注计算过程,我们只需调用CrossEntropyLoss即可得到Loss

得到Loss之后,我们就可以使用PyTorch中的loss.backward()方法来自动计算梯度,计算每个卷积核的梯度,更新模型。

相关推荐
明明如月学长3 小时前
全网最火的 Agent Skills 都在这了!这 7 个宝藏市场建议收藏
人工智能
猫头虎3 小时前
如何使用Docker部署OpenClaw汉化中文版?
运维·人工智能·docker·容器·langchain·开源·aigc
njsgcs3 小时前
输入图片,点击按钮,返回下一个state的图片,llm给标签,循环,能训练出按钮对应的标签吗
人工智能
holeer3 小时前
【V2.0】王万良《人工智能导论》笔记|《人工智能及其应用》课程教材笔记
神经网络·机器学习·ai·cnn·nlp·知识图谱·智能计算
啊森要自信3 小时前
CANN runtime 深度解析:异构计算架构下运行时组件的性能保障与功能增强实现逻辑
深度学习·架构·transformer·cann
Aric_Jones3 小时前
如何在网站中接入 AI 智能助手
人工智能
m0_571186603 小时前
第三十四周周报
人工智能
AI资源库3 小时前
microsoftVibeVoice-ASR模型深入解析
人工智能·语言模型
jarvisuni3 小时前
开发“360安全卫士”,Opus4.6把GPT5.3吊起来打了?!
人工智能·gpt·ai编程
kyle~3 小时前
深度学习---长短期记忆网络LSTM
人工智能·深度学习·lstm