DAViMNet:基于状态空间模型的域自适应目标检测

摘要:目标检测的无监督域自适应(UDA)旨在让在有标签源域上训练的模型适应无标签的目标域,确保模型在域迁移时仍具备稳健的性能。基于 Transformer 的架构擅长捕捉长距离依赖关系,但由于其二次方的注意力计算复杂度,面临效率方面的挑战,这限制了它在 UDA 任务中的可扩展性。为解决这些问题,我们提出了一种混合域自适应曼巴 - 变压器(Hybrid Domain-Adaptive Mamba-Transformer)架构,该架构将曼巴(Mamba)高效的状态空间建模与注意力机制相结合,以应对特定域的空间和通道变化。每个混合块集成了域自适应曼巴(DAMamba)块和注意力机制:DAMamba 采用空间和通道状态空间模型(SSMs)对域变化进行自适应建模,而注意力机制利用自注意力增强域内特征,利用交叉注意力实现源域与目标域的有效对齐。我们的方法同时处理浅层和深层特征,采用基于熵的知识蒸馏框架和带裕度的 ReLU 函数,突出判别性特征并抑制噪声。梯度反转层(Gradient Reversal Layers)可实现跨网络层的对抗对齐,而熵驱动的门控注意力结合随机扰动则能优化目标特征,减轻过拟合。通过整合这些组件,我们的架构在 UDA 目标检测中达到了最先进的性能水平,兼顾了效率和强大的泛化能力。

相关推荐
数据大魔方8 分钟前
【期货量化实战】螺纹钢量化交易指南:品种特性与策略实战(TqSdk完整方案)
python·算法·github·程序员创富·期货程序化·期货量化·交易策略实战
旻璿gg25 分钟前
paddleocr、paddleocrvl、ppocrv5
python
清水白石00827 分钟前
手写超速 CSV 解析器:利用 multiprocessing 与 mmap 实现 10 倍 Pandas 加速
python·pandas
Corleo43 分钟前
记录一次复杂的 ONNX 到 TensorRT 动态 Shape 转换排错过程
python·ai
shughui1 小时前
Python基础面试题:语言定位+数据类型+核心操作+算法实战(含代码实例)
开发语言·python·算法
Yeats_Liao1 小时前
MindSpore开发之路(二十五):融入开源:如何为MindSpore社区贡献力量
人工智能·分布式·深度学习·机器学习·华为·开源
No0d1es1 小时前
2025年12月电子学会青少年软件编程Python六级等级考试真题试卷
开发语言·python·青少年编程·等级考试·电子学会
Blossom.1181 小时前
Transformer架构优化实战:从MHA到MQA/GQA的显存革命
人工智能·python·深度学习·react.js·架构·aigc·transformer
溪海莘2 小时前
如何部署使用uv管理依赖的python项目 ?
开发语言·python·uv
小明_GLC2 小时前
Falcon-TST: A Large-Scale Time Series Foundation Model
论文阅读·人工智能·深度学习·transformer