【LetMeFly】132.分割回文串 II:动态规划
力扣题目链接:https://leetcode.cn/problems/palindrome-partitioning-ii/
给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文串。
返回符合要求的 最少分割次数 。
示例 1:
输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。示例 2:
输入:s = "a"
输出:0示例 3:
输入:s = "ab"
输出:1提示:
- 1 <= s.length <= 2000
- s仅由小写英文字母组成
解题方法:动态规划
整个过程分为两步:预处理 和 动态规划
动态规划:
使用数组 d p dp dp,其中 d p [ i ] dp[i] dp[i]代表使得子字符串 0... i 0...i 0...i为回文字符串组合的最小分割次数,那么 d p [ l e n ( s ) − 1 ] dp[len(s) - 1] dp[len(s)−1]即为答案。
- 
如果 0... i 0...i 0...i直接为回文字符串,那么分割次数为0。 
- 
否则,对于 j ∈ 0... i − 1 j\in 0...i-1 j∈0...i−1,如果 j + 1.. i j + 1..i j+1..i是回文字符串,那么有 d p [ i ] = m i n ( d p [ j ] + 1 ) dp[i] = min(dp[j] + 1) dp[i]=min(dp[j]+1) 
预处理:
有没有什么办法 O ( 1 ) O(1) O(1)时间内快速判断下标从 i i i到 j j j的子字符串是否为回文字符串?有,我们可以先使用 O ( n 2 ) O(n^2) O(n2)复杂度的时间预处理。使用 i s O k [ i ] [ j ] isOk[i][j] isOk[i][j]表示子字符串 i . . . j i...j i...j是否为回文字符串:
- 如果子字符串为空或者长度为1,则是回文字符串( i ≥ j i \geq j i≥j)
- 否则:是回文字符串当且仅当 s [ i ] = = s [ j ] AND i s O k [ i + 1 ] [ j − 1 ] s[i] == s[j] \text{ AND }isOk[i + 1][j - 1] s[i]==s[j] AND isOk[i+1][j−1]
时空复杂度分析
- 时间复杂度 O ( n 2 ) O(n^2) O(n2),预处理和动态规划的时间复杂度都是 O ( n 2 ) O(n^2) O(n2)。其中 n = l e n ( s ) n = len(s) n=len(s)
- 空间复杂度 O ( n 2 ) O(n^2) O(n2)
AC代码
C++
            
            
              cpp
              
              
            
          
          /*
 * @Author: LetMeFly
 * @Date: 2025-03-02 12:02:45
 * @LastEditors: LetMeFly.xyz
 * @LastEditTime: 2025-03-02 12:26:06
 */
class Solution {
public:
    int minCut(string s) {
        vector<vector<bool>> isOk(s.size(), vector<bool>(s.size(), true));
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                isOk[i][j] = s[i] == s[j] && isOk[i + 1][j - 1];
            }
        }
        vector<int> dp(s.size(), 1000000);
        for (int i = 0; i < s.size(); i++) {
            if (isOk[0][i]) {
                dp[i] = 0;
                continue;
            }
            for (int j = 0; j < i; j++) {
                if (isOk[j + 1][i]) {
                    dp[i] = min(dp[i], dp[j] + 1);
                }
            }
        }
        return dp.back();
    }
};Python
            
            
              python
              
              
            
          
          '''
Author: LetMeFly
Date: 2025-03-02 12:26:57
LastEditors: LetMeFly.xyz
LastEditTime: 2025-03-02 12:33:40
'''
class Solution:
    def minCut(self, s: str) -> int:
        isOk = [[True] * len(s) for _ in range(len(s))]
        for i in range(len(s) - 1, -1, -1):
            for j in range(i + 1, len(s)):
                isOk[i][j] = s[i] == s[j] and isOk[i + 1][j - 1]
        
        dp = [100000] * len(s)
        for i in range(len(s)):
            if isOk[0][i]:
                dp[i] = 0
                continue
            for j in range(i):
                if isOk[j + 1][i]:
                    dp[i] = min(dp[i], dp[j] + 1)
        return dp[-1]Java
            
            
              java
              
              
            
          
          /*
 * @Author: LetMeFly
 * @Date: 2025-03-02 12:34:31
 * @LastEditors: LetMeFly.xyz
 * @LastEditTime: 2025-03-02 12:38:17
 */
class Solution {
    public int minCut(String s) {
        boolean[][] isOk = new boolean[s.length()][s.length()];
        for (int i = 0; i < s.length(); i++) {
            for (int j = 0; j < s.length(); j++) {
                isOk[i][j] = true;
            }
        }
        for (int i = s.length() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.length(); j++) {
                isOk[i][j] = s.charAt(i) == s.charAt(j) && isOk[i + 1][j - 1];
            }
        }
        int[] dp = new int[s.length()];
        for (int i = 0; i < s.length(); i++) {
            dp[i] = 100000;
        }
        for (int i = 0; i < s.length(); i++) {
            if (isOk[0][i]) {
                dp[i] = 0;
                continue;
            }
            for (int j = 0; j < i; j++) {
                if (isOk[j + 1][i]) {
                    dp[i] = Math.min(dp[i], dp[j] + 1);
                }
            }
        }
        return dp[dp.length - 1];
    }
}Go
            
            
              go
              
              
            
          
          /*
 * @Author: LetMeFly
 * @Date: 2025-03-02 12:39:13
 * @LastEditors: LetMeFly.xyz
 * @LastEditTime: 2025-03-02 12:43:12
 */
package main
func minCut(s string) int {
    isOk := make([][]bool, len(s))
    for i, _ := range isOk {
        isOk[i] = make([]bool, len(s))
        for j, _ := range isOk[i] {
            isOk[i][j] = true
        }
    }
    for i := len(s) - 1; i >= 0; i-- {
        for j := i + 1; j < len(s); j++ {
            isOk[i][j] = s[i] == s[j] && isOk[i + 1][j - 1]
        }
    }
    dp := make([]int, len(s))
    for i, _ := range dp {
        dp[i] = 100000
    }
    for i := 0; i < len(dp); i++ {
        if isOk[0][i] {
            dp[i] = 0
            continue
        }
        for j := 0; j < i; j++ {
            if isOk[j + 1][i] {
                dp[i] = min(dp[i], dp[j] + 1)
            }
        }
    }
    return dp[len(dp) - 1]
}同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~
千篇源码题解已开源