【工具】COME对比映射学习用于scRNA-seq数据的空间重构

介绍

单细胞RNA测序(scRNA-seq)能够在单细胞分辨率下实现高通量转录组分析。固有的空间位置对于理解单细胞如何协调多细胞功能和驱动疾病至关重要。然而,在组织分离过程中,空间信息常常丢失。空间转录组学(ST)技术可以提供精确的空间基因表达图谱,但其实用性受到其可测定的基因数量或在更大规模上的相关成本以及细粒度细胞类型注释的限制。通过细胞对应学习在scRNA-seq和空间转录组学数据之间传递知识,可以恢复scRNA-seq数据集固有的空间特性。

在本研究中,我们引入了一种名为COME的对比映射学习方法,该方法可以学习ST和scRNA-seq数据之间的映射,从而恢复scRNA-seq数据的空间信息。大量的实验表明,提出的COME方法有效地捕获了精确的细胞-点关系,并且在恢复scRNA-seq数据的空间位置方面优于先前的方法。更重要的是,我们的方法能够精确识别数据中有生物学意义的信息,如缺失基因的空间结构、空间层次模式和每个点的细胞类型组成。这些结果表明,提出的COME方法可以帮助理解组织环境中细胞之间的异质性和活性。

Abstract

Motivation

Single-cell RNA sequencing (scRNA-seq) enables high-throughput transcriptomic profiling at single-cell resolution. The inherent spatial location is crucial for understanding how single cells orchestrate multicellular functions and drive diseases. However, spatial information is often lost during tissue dissociation. Spatial transcriptomic (ST) technologies can provide precise spatial gene expression atlas, while their practicality is constrained by the number of genes they can assay or the associated costs at a larger scale and the fine-grained cell type annotation. By transferring knowledge between scRNA-seq and spatial transcriptomics data through cell correspondence learning, it is possible to recover the spatial properties inherent in scRNA-seq datasets.
Results

In this study, we introduce COME, a COntrastive Mapping lEarning approach that learns mapping between ST and scRNA-seq data to recover the spatial information of scRNA-seq data. Extensive experiments demonstrate that the proposed COME method effectively captures precise cell-spot relationships and outperforms previous methods in recovering spatial location for scRNA-seq data. More importantly, our method is capable of precisely identifying biologically meaningful information within the data, such as the spatial structure of missing genes, spatial hierarchical patterns, and the cell-type compositions for each spot. These results indicate that the proposed COME method can help to understand the heterogeneity and activities among cells within tissue environments.

代码

https://github.com/cindyway/COME/blob/main/Tutorial.ipynb

参考

  • COME: contrastive mapping learning for spatial reconstruction of scRNA-seq data
相关推荐
码界奇点13 分钟前
Python与OpenCV集成海康威视工业相机从基础配置到高级应用的全方位指南
python·数码相机·opencv·相机·python3.11
来两个炸鸡腿15 分钟前
DW动手学大模型应用全栈开发 - (1)大模型应用开发应知必会
python·深度学习·学习·nlp
qq_4182478820 分钟前
恒源云/autodl与pycharm远程连接
ide·人工智能·python·神经网络·机器学习·pycharm·图论
我命由我1234525 分钟前
Python Flask 开发 - Flask 快速上手(Flask 最简单的案例、Flask 处理跨域、Flask 基础接口)
服务器·开发语言·后端·python·学习·flask·学习方法
大飞记Python26 分钟前
从零配置Python测试环境:详解路径、依赖与虚拟环境最佳实践
开发语言·python·环境配置·安装目录
资深设备全生命周期管理30 分钟前
SOP实时侦测系统
python
棒棒的皮皮32 分钟前
【OpenCV】Python图像处理几何变换之透视
图像处理·python·opencv·计算机视觉
adaAS141431536 分钟前
YOLO11-ReCalibrationFPN-P345实现酒液品牌识别与分类_1
人工智能·分类·数据挖掘
小鸡吃米…41 分钟前
Python编程语言面试问题一
python·面试
天外飞雨1 小时前
室内重跑EKF
python