【工具】COME对比映射学习用于scRNA-seq数据的空间重构

介绍

单细胞RNA测序(scRNA-seq)能够在单细胞分辨率下实现高通量转录组分析。固有的空间位置对于理解单细胞如何协调多细胞功能和驱动疾病至关重要。然而,在组织分离过程中,空间信息常常丢失。空间转录组学(ST)技术可以提供精确的空间基因表达图谱,但其实用性受到其可测定的基因数量或在更大规模上的相关成本以及细粒度细胞类型注释的限制。通过细胞对应学习在scRNA-seq和空间转录组学数据之间传递知识,可以恢复scRNA-seq数据集固有的空间特性。

在本研究中,我们引入了一种名为COME的对比映射学习方法,该方法可以学习ST和scRNA-seq数据之间的映射,从而恢复scRNA-seq数据的空间信息。大量的实验表明,提出的COME方法有效地捕获了精确的细胞-点关系,并且在恢复scRNA-seq数据的空间位置方面优于先前的方法。更重要的是,我们的方法能够精确识别数据中有生物学意义的信息,如缺失基因的空间结构、空间层次模式和每个点的细胞类型组成。这些结果表明,提出的COME方法可以帮助理解组织环境中细胞之间的异质性和活性。

Abstract

Motivation

Single-cell RNA sequencing (scRNA-seq) enables high-throughput transcriptomic profiling at single-cell resolution. The inherent spatial location is crucial for understanding how single cells orchestrate multicellular functions and drive diseases. However, spatial information is often lost during tissue dissociation. Spatial transcriptomic (ST) technologies can provide precise spatial gene expression atlas, while their practicality is constrained by the number of genes they can assay or the associated costs at a larger scale and the fine-grained cell type annotation. By transferring knowledge between scRNA-seq and spatial transcriptomics data through cell correspondence learning, it is possible to recover the spatial properties inherent in scRNA-seq datasets.
Results

In this study, we introduce COME, a COntrastive Mapping lEarning approach that learns mapping between ST and scRNA-seq data to recover the spatial information of scRNA-seq data. Extensive experiments demonstrate that the proposed COME method effectively captures precise cell-spot relationships and outperforms previous methods in recovering spatial location for scRNA-seq data. More importantly, our method is capable of precisely identifying biologically meaningful information within the data, such as the spatial structure of missing genes, spatial hierarchical patterns, and the cell-type compositions for each spot. These results indicate that the proposed COME method can help to understand the heterogeneity and activities among cells within tissue environments.

代码

https://github.com/cindyway/COME/blob/main/Tutorial.ipynb

参考

  • COME: contrastive mapping learning for spatial reconstruction of scRNA-seq data
相关推荐
川石课堂软件测试2 分钟前
涨薪技术|持续集成Git使用详解
开发语言·javascript·git·python·功能测试·ci/cd·单元测试
小小码农一只17 分钟前
轻松部署 Stable Diffusion WebUI 并实现局域网共享访问:解决 Conda Python 版本不为 3.10.6 的难题
python·stable diffusion·conda
阿正的梦工坊20 分钟前
解析 PyTorch 中的 torch.multinomial 函数
人工智能·pytorch·python
kcarly29 分钟前
Web Snapshot 网页截图 模块代码详解
前端·python·网页截图
王有品1 小时前
python之爬虫入门实例
开发语言·爬虫·python
岱宗夫up1 小时前
【django初学者项目】
python·django·html
万山y1 小时前
curosr提示词推荐
python
康谋自动驾驶1 小时前
康谋分享 | 3DGS:革新自动驾驶仿真场景重建的关键技术
人工智能·科技·3d·数据分析·自动驾驶·汽车
麦麦大数据1 小时前
vue+neo4j 四大名著知识图谱问答系统
vue.js·人工智能·python·django·问答系统·知识图谱·neo4j
善木科研1 小时前
R语言绘图:韦恩图
数据分析·r语言·生物信息·生信分析