PyTorch中的线性变换:nn.Parameter VS nn.Linear

self.weight = nn.Parameter(torch.randn(in_channels, out_channels))self.linear = nn.Linear(in_channels, out_channels) 并不完全一致,尽管它们都可以用于实现线性变换(即全连接层),但它们的使用方式和内部实现有所不同。

nn.Parameter

当手动创建一个 nn.Parameter 时,是在显式地定义权重矩阵,并且需要自己管理这个参数以及它如何参与到计算中。例如:

python 复制代码
self.weight = nn.Parameter(torch.randn(in_channels, out_channels))

这里,self.weight 是一个可学习的参数,可以将其视为模型的一部分,并在前向传播过程中手动与输入进行矩阵乘法运算。假设输入是 x,则输出可以这样计算:

python 复制代码
output = torch.matmul(x, self.weight)

注意这里的数学公式是 (Y = XW),其中 (X) 是输入矩阵,(W) 是权重矩阵。如果还需要加上偏置项 (b),则变为 (Y = XW + b)。在这个例子中,需要另外定义并初始化偏置项 self.bias

示例 1:自定义实现线性层

python 复制代码
import torch
import torch.nn as nn

class CustomLinear(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(CustomLinear, self).__init__()
        # 初始化权重
        self.weight = nn.Parameter(torch.randn(in_channels, out_channels))
        # 初始化偏置
        self.bias = nn.Parameter(torch.randn(out_channels))

    def forward(self, x):
        # 线性变换:Y = XW + b
        return torch.matmul(x, self.weight) + self.bias

# 创建自定义线性层
custom_linear = CustomLinear(in_channels=3, out_channels=2)

# 打印权重和偏置
print("Weights:", custom_linear.weight)
print("Bias:", custom_linear.bias)

# 输入数据
input_data = torch.randn(4, 3)  # 4个样本,每个样本有3个特征

# 前向传播
output = custom_linear(input_data)
print("Output:", output)

在这个示例中,我们手动创建了一个自定义的线性层 CustomLinear,它使用 nn.Parameter 来定义权重和偏置。在 forward 方法中,我们手动计算线性变换:Y = XW + b。这个实现与 nn.Linear 提供的功能类似,但更多地体现了手动管理权重和偏置的方式。

nn.Linear

另一方面,nn.Linear 是 PyTorch 提供的一个封装好的模块,用于执行线性变换。它不仅包含了权重矩阵,还自动处理了偏置项(除非明确设置 bias=False)。例如:

python 复制代码
self.linear = nn.Linear(in_channels, out_channels)

当调用 self.linear(x) 时,它实际上是在执行以下操作:

python 复制代码
output = torch.matmul(x, self.linear.weight.t()) + self.linear.bias

这里,self.linear.weight 的形状是 (out_channels, in_channels),而不是直接 (in_channels, out_channels),因此在进行矩阵乘法之前需要对其转置 (t() 方法)。这意味着数学公式实际上是 (Y = XW^T + b),其中 (W^T) 表示权重矩阵的转置。

示例 2:使用 nn.Linear

python 复制代码
import torch
import torch.nn as nn

# 定义一个线性层
linear_layer = nn.Linear(in_features=3, out_features=2)

# 打印权重和偏置
print("Weights:", linear_layer.weight)
print("Bias:", linear_layer.bias)

# 输入数据
input_data = torch.randn(4, 3)  # 4个样本,每个样本有3个特征

# 前向传播
output = linear_layer(input_data)
print("Output:", output)

在这个示例中,我们创建了一个线性层,它接受一个形状为 [4, 3] 的输入数据,并将其映射到一个形状为 [4, 2] 的输出数据。linear_layer.weightlinear_layer.bias 是自动初始化的。

数学公式的对比

  • 对于手动定义的 nn.Parameter,如果输入是 (X) (形状为 ([N, in_channels])),权重是 (W) (形状为 ([in_channels, out_channels])),那么输出 (Y) 将通过 (Y = XW) 计算。

  • 对于 nn.Linear,同样的输入 (X) (形状为 ([N, in_channels])),但是权重 (W') (形状为 ([out_channels, in_channels])),输出 (Y) 将通过 (Y = X(W')^T + b) 计算。

从上面可以看出,虽然两者都实现了线性变换,但在 nn.Linear 中,权重矩阵的形状是倒置的,以适应其内部的实现细节。此外,nn.Linear 还自动处理了偏置项的添加,这使得它比手动定义参数更加方便和简洁。

相关推荐
Wpa.wk9 小时前
自动化测试环境配置-java+python
java·开发语言·python·测试工具·自动化
带刺的坐椅9 小时前
AI 应用工作流:LangGraph 和 Solon AI Flow,我该选谁?
java·python·ai·solon·flow·langgraph
CoovallyAIHub10 小时前
超越YOLOv8/v11!自研RKM-YOLO为输电线路巡检精度、速度双提升
深度学习·算法·计算机视觉
工业互联网专业10 小时前
图片推荐系统_django+spider
python·django·毕业设计·源码·课程设计·spider·图片推荐系统
Lwcah10 小时前
Python | LGBM+SHAP可解释性分析回归预测及可视化算法
python·算法·回归
@一辈子爱你10 小时前
归来九十余日:在时代的夹缝中,与你共筑一道光
python
BagMM10 小时前
FC-CLIP 论文阅读 开放词汇的检测与分割的统一
人工智能·深度学习·计算机视觉
HsuHeinrich11 小时前
利用面积图探索历史温度的变化趋势
python·数据可视化
winfredzhang11 小时前
Python实战:手把手教你写一个带界面的“照片按日期归档与清理”工具
python·复制·日期·回收站·媒体文件备份
程序员三藏14 小时前
Jmeter自动化测试
自动化测试·软件测试·python·测试工具·jmeter·测试用例·接口测试