PyTorch中的线性变换:nn.Parameter VS nn.Linear

self.weight = nn.Parameter(torch.randn(in_channels, out_channels))self.linear = nn.Linear(in_channels, out_channels) 并不完全一致,尽管它们都可以用于实现线性变换(即全连接层),但它们的使用方式和内部实现有所不同。

nn.Parameter

当手动创建一个 nn.Parameter 时,是在显式地定义权重矩阵,并且需要自己管理这个参数以及它如何参与到计算中。例如:

python 复制代码
self.weight = nn.Parameter(torch.randn(in_channels, out_channels))

这里,self.weight 是一个可学习的参数,可以将其视为模型的一部分,并在前向传播过程中手动与输入进行矩阵乘法运算。假设输入是 x,则输出可以这样计算:

python 复制代码
output = torch.matmul(x, self.weight)

注意这里的数学公式是 (Y = XW),其中 (X) 是输入矩阵,(W) 是权重矩阵。如果还需要加上偏置项 (b),则变为 (Y = XW + b)。在这个例子中,需要另外定义并初始化偏置项 self.bias

示例 1:自定义实现线性层

python 复制代码
import torch
import torch.nn as nn

class CustomLinear(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(CustomLinear, self).__init__()
        # 初始化权重
        self.weight = nn.Parameter(torch.randn(in_channels, out_channels))
        # 初始化偏置
        self.bias = nn.Parameter(torch.randn(out_channels))

    def forward(self, x):
        # 线性变换:Y = XW + b
        return torch.matmul(x, self.weight) + self.bias

# 创建自定义线性层
custom_linear = CustomLinear(in_channels=3, out_channels=2)

# 打印权重和偏置
print("Weights:", custom_linear.weight)
print("Bias:", custom_linear.bias)

# 输入数据
input_data = torch.randn(4, 3)  # 4个样本,每个样本有3个特征

# 前向传播
output = custom_linear(input_data)
print("Output:", output)

在这个示例中,我们手动创建了一个自定义的线性层 CustomLinear,它使用 nn.Parameter 来定义权重和偏置。在 forward 方法中,我们手动计算线性变换:Y = XW + b。这个实现与 nn.Linear 提供的功能类似,但更多地体现了手动管理权重和偏置的方式。

nn.Linear

另一方面,nn.Linear 是 PyTorch 提供的一个封装好的模块,用于执行线性变换。它不仅包含了权重矩阵,还自动处理了偏置项(除非明确设置 bias=False)。例如:

python 复制代码
self.linear = nn.Linear(in_channels, out_channels)

当调用 self.linear(x) 时,它实际上是在执行以下操作:

python 复制代码
output = torch.matmul(x, self.linear.weight.t()) + self.linear.bias

这里,self.linear.weight 的形状是 (out_channels, in_channels),而不是直接 (in_channels, out_channels),因此在进行矩阵乘法之前需要对其转置 (t() 方法)。这意味着数学公式实际上是 (Y = XW^T + b),其中 (W^T) 表示权重矩阵的转置。

示例 2:使用 nn.Linear

python 复制代码
import torch
import torch.nn as nn

# 定义一个线性层
linear_layer = nn.Linear(in_features=3, out_features=2)

# 打印权重和偏置
print("Weights:", linear_layer.weight)
print("Bias:", linear_layer.bias)

# 输入数据
input_data = torch.randn(4, 3)  # 4个样本,每个样本有3个特征

# 前向传播
output = linear_layer(input_data)
print("Output:", output)

在这个示例中,我们创建了一个线性层,它接受一个形状为 [4, 3] 的输入数据,并将其映射到一个形状为 [4, 2] 的输出数据。linear_layer.weightlinear_layer.bias 是自动初始化的。

数学公式的对比

  • 对于手动定义的 nn.Parameter,如果输入是 (X) (形状为 ([N, in_channels])),权重是 (W) (形状为 ([in_channels, out_channels])),那么输出 (Y) 将通过 (Y = XW) 计算。

  • 对于 nn.Linear,同样的输入 (X) (形状为 ([N, in_channels])),但是权重 (W') (形状为 ([out_channels, in_channels])),输出 (Y) 将通过 (Y = X(W')^T + b) 计算。

从上面可以看出,虽然两者都实现了线性变换,但在 nn.Linear 中,权重矩阵的形状是倒置的,以适应其内部的实现细节。此外,nn.Linear 还自动处理了偏置项的添加,这使得它比手动定义参数更加方便和简洁。

相关推荐
berryyan3 分钟前
傻瓜教程安装Trae IDE用AI撰写第一个AKShare接口脚本
python·trae
视觉语言导航12 分钟前
复杂地形越野机器人导航新突破!VERTIFORMER:数据高效多任务Transformer助力越野机器人移动导航
人工智能·深度学习·机器人·transformer·具身智能
灏瀚星空20 分钟前
从基础到实战的量化交易全流程学习:1.3 数学与统计学基础——概率与统计基础 | 基础概念
笔记·python·学习·金融·概率论
Hellohistory25 分钟前
HOTP 算法与实现解析
后端·python
伊织code26 分钟前
cached-property - 类属性缓存装饰器
python·缓存·cache·装饰器·ttl·property·cached-property
Blossom.11832 分钟前
量子计算在密码学中的应用与挑战:重塑信息安全的未来
人工智能·深度学习·物联网·算法·密码学·量子计算·量子安全
明明跟你说过43 分钟前
深度学习常见框架:TensorFlow 与 PyTorch 简介与对比
人工智能·pytorch·python·深度学习·自然语言处理·tensorflow
搏博1 小时前
专家系统的基本概念解析——基于《人工智能原理与方法》的深度拓展
人工智能·python·深度学习·算法·机器学习·概率论
yzx9910131 小时前
决策树随机深林
人工智能·python·算法·决策树·机器学习
梓羽玩Python1 小时前
月之暗面最新开源模型!Kimi-Audio:革新多模态音频处理,统一音频理解、生成与对话!
人工智能·python·github