通过着装人体剪影预测关键点,以获取人体的二维尺寸数据。复现过程包括获取或生成3D人体数据集、生成轮廓图像、训练模型等步骤

根据文献《1_Clothes Size Prediction from Dressed-Human Silhouettes》复现方法,主要通过着装人体剪影预测关键点,以获取人体的二维尺寸数据。复现过程包括获取或生成3D人体数据集、生成轮廓图像、训练模型等步骤。

以下是进行复现的大致步骤,你可以根据实际情况进行调整和完善:

  1. 获取或生成3D人体数据集

    • 可以从公开的3D人体数据集如Surreal、SMPLify等获取数据。这些数据集通常包含丰富的人体模型信息,包括不同体型、姿态和穿着的人体数据。
    • 如果需要生成自己的数据集,可以使用3D建模软件(如Blender、Maya等)创建多样化的着装人体模型,并对其进行参数化处理,以获取相关的尺寸信息。
  2. 生成轮廓图像

    • 对于3D人体数据集中的每个模型,从不同的视角进行投影,生成2D的轮廓图像。可以使用计算机图形学的方法来实现这一过程,确保生成的轮廓图像能够准确地反映人体的外形。
    • 在生成轮廓图像时,可以考虑添加一些噪声或变化,以增加数据集的多样性,提高模型的泛化能力。
  3. 训练模型

    • 选择合适的模型架构:可以使用卷积神经网络(CNN)、递归神经网络(RNN)或它们的组合来构建预测模型。例如,基于卷积神经网络的U-Net架构在图像分割和关键点检测任务中表现出色。
    • 数据预处理:对生成的轮廓图像和对应的关键点标注进行归一化处理,以确保数据的一致性和可比性。
    • 划分训练集、验证集和测试集:将数据集按照一定的比例划分为训练集、验证集和测试集,用于模型的训练、验证和评估。
    • 训练模型:使用训练集对模型进行训练,通过最小化损失函数(如均方误差损失函数)来优化模型的参数。在训练过程中,可以使用验证集来监控模型的性能,防止过拟合。
    • 调整超参数:根据验证集的结果,调整模型的超参数,如学习率、批量大小、网络层数等,以提高模型的性能。
  4. 评估模型

    • 使用测试集对训练好的模型进行评估,计算模型的预测准确率、召回率、F1值等指标,以衡量模型的性能。
    • 对模型的预测结果进行可视化分析,观察模型在不同情况下的表现,找出模型的不足之处,并进行进一步的改进。
  5. 获取二维尺寸数据

    • 根据预测得到的关键点,计算人体的二维尺寸数据,如身高、肩宽、腰围、臀围等。可以使用几何计算的方法来实现这一过程。

在复现过程中,可能会遇到一些挑战,如数据集的获取和处理、模型的选择和训练等。需要根据具体情况进行调整和优化,以确保复现的结果与文献中的方法一致。同时,也可以尝试对方法进行改进和创新,以提高模型的性能和实用性。

相关推荐
新启航-光学3D测量12 分钟前
从 48 小时到 4 小时:三维逆向工程中自动化工具链如何重构扫描建模效率
科技·3d·制造
彩旗工作室6 小时前
腾讯混元3D系列开源模型:从工业级到移动端的本地部署
3d·开源·腾讯混元
CG_MAGIC6 小时前
主流 3D 模型格式(FBX/OBJ/DAE/GLTF)材质支持与转换操作指南
3d·渲染·动画·材质·贴图·3d 模型格式·材质支持与转换操作指南
计算机科研圈13 小时前
ICCV 2025 | 首个3D动作游戏专用VLA模型,打黑神话&只狼超越人类玩家
图像处理·人工智能·3d·黑神话
LetsonH1 天前
⭐CVPR2025 RigGS:从 2D 视频到可编辑 3D 关节物体的建模新范式
3d
郝学胜-神的一滴1 天前
Three.js 材质系统深度解析
javascript·3d·游戏引擎·webgl·材质
AndrewHZ2 天前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
二川bro3 天前
第16节:自定义几何体 - 从顶点构建3D世界
3d
迈火3 天前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
新启航光学频率梳4 天前
【新启航】起落架大型结构件深孔检测探究 - 激光频率梳 3D 轮廓检测
科技·3d·制造