一文读懂深度学习中的损失函数quantifying loss —— 作用、分类和示例代码

在深度学习中,quantifying loss(量化损失)是指通过数学方法计算模型预测值与真实值之间的差异,以衡量模型的性能。损失函数(Loss Function)是量化损失的核心工具,它定义了模型预测值与真实值之间的误差大小。损失值越小,表示模型的预测越接近真实值。


一、损失函数的作用

  1. 衡量模型性能:损失函数提供了一个具体的数值,用于评估模型在当前参数下的表现。
  2. 指导模型优化:通过最小化损失函数,模型可以逐步调整参数,使预测结果更接近真实值。
  3. 帮助模型收敛:损失函数是优化算法(如梯度下降)的核心,它决定了模型参数更新的方向和幅度。

二、常见的损失函数

根据任务类型(如回归、分类等),常用的损失函数有所不同:

1. 回归任务(Regression)

均方误差(Mean Squared Error, MSE)

计算预测值与真实值之间平方差的平均值。适用于回归问题。
MSE = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 MSE=n1∑i=1n(yi−y^i)2

其中, y i y_i yi 是真实值, y ^ i \hat{y}_i y^i 是预测值, n n n 是样本数量。

平均绝对误差(Mean Absolute Error, MAE)

计算预测值与真实值之间绝对差的平均值。对异常值不敏感。
MAE = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ \text{MAE} = \frac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i| MAE=n1∑i=1n∣yi−y^i∣

2. 分类任务(Classification)

交叉熵损失(Cross-Entropy Loss)

衡量预测概率分布与真实概率分布之间的差异。适用于分类问题。

◦ 二分类(Binary Cross-Entropy):
BCE = − 1 n ∑ i = 1 n ( y i log ⁡ ( y ^ i ) + ( 1 − y i ) log ⁡ ( 1 − y ^ i ) ) \text{BCE} = -\frac{1}{n} \sum_{i=1}^n \left( y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right) BCE=−n1∑i=1n(yilog(y^i)+(1−yi)log(1−y^i))

◦ 多分类(Categorical Cross-Entropy):
CCE = − 1 n ∑ i = 1 n ∑ j = 1 m y i j log ⁡ ( y ^ i j ) \text{CCE} = -\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^m y_{ij} \log(\hat{y}_{ij}) CCE=−n1∑i=1n∑j=1myijlog(y^ij)

其中, m m m是类别数量, y i j y_{ij} yij 是真实标签(one-hot 编码), y ^ i j \hat{y}_{ij} y^ij 是预测概率。

稀疏分类交叉熵(Sparse Categorical Cross-Entropy)

适用于标签是整数(非 one-hot 编码)的分类任务。
Sparse CCE = − 1 n ∑ i = 1 n log ⁡ ( y ^ i , y i ) \text{Sparse CCE} = -\frac{1}{n} \sum_{i=1}^n \log(\hat{y}_{i, y_i}) Sparse CCE=−n1∑i=1nlog(y^i,yi)

3. 其他任务

Hinge Loss

用于支持向量机(SVM)和二分类问题。
Hinge Loss = max ⁡ ( 0 , 1 − y i ⋅ y ^ i ) \text{Hinge Loss} = \max(0, 1 - y_i \cdot \hat{y}_i) Hinge Loss=max(0,1−yi⋅y^i)

Kullback-Leibler Divergence (KL Divergence)

衡量两个概率分布之间的差异,常用于生成模型(如变分自编码器)。


三、如何量化损失

在训练模型时,损失函数的计算过程如下:

  1. 前向传播:模型根据输入数据计算预测值。
  2. 计算损失:使用损失函数计算预测值与真实值之间的误差。
  3. 反向传播:根据损失值计算梯度,更新模型参数。

在 Keras 中,可以通过 model.compile() 指定损失函数,并通过 model.fit() 训练模型。


四、示例代码

以下是一个使用均方误差(MSE)作为损失函数的回归任务示例:

python 复制代码
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

# 构建模型
model = Sequential([
    Dense(64, input_shape=(10,), activation='relu'),  # 输入维度为 10
    Dense(32, activation='relu'),
    Dense(1)  # 输出层,用于回归任务
])

# 编译模型,指定损失函数为 MSE
model.compile(optimizer='adam', loss='mean_squared_error')

# 生成随机数据
import numpy as np
x_train = np.random.rand(1000, 10)
y_train = np.random.rand(1000, 1)

# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32)

五、总结

Quantifying loss 是通过损失函数计算模型预测值与真实值之间的差异,以衡量模型性能并指导优化。不同的任务需要使用不同的损失函数,例如均方误差(MSE)用于回归任务,交叉熵损失用于分类任务。理解损失函数的作用和选择适当的损失函数是构建高效深度学习模型的关键。

相关推荐
shayudiandian24 分钟前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花28 分钟前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午41 分钟前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
模型启动机1 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
Python私教1 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教1 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能
prog_61031 小时前
【笔记】和各大AI语言模型写项目——手搓SDN后得到的经验
人工智能·笔记·语言模型
zhangfeng11331 小时前
深入剖析Kimi K2 Thinking与其他大规模语言模型(Large Language Models, LLMs)之间的差异
人工智能·语言模型·自然语言处理
paopao_wu1 小时前
人脸检测与识别-InsightFace:特征向量提取与识别
人工智能·目标检测
Aevget2 小时前
MyEclipse全新发布v2025.2——AI + Java 24 +更快的调试
java·ide·人工智能·eclipse·myeclipse