nlp培训重点-5

1. LoRA微调

loader:

python 复制代码
# -*- coding: utf-8 -*-

import json
import re
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer
"""
数据加载
"""


class DataGenerator:
    def __init__(self, data_path, config):
        self.config = config
        self.path = data_path
        self.index_to_label = {0: '家居', 1: '房产', 2: '股票', 3: '社会', 4: '文化',
                               5: '国际', 6: '教育', 7: '军事', 8: '彩票', 9: '旅游',
                               10: '体育', 11: '科技', 12: '汽车', 13: '健康',
                               14: '娱乐', 15: '财经', 16: '时尚', 17: '游戏'}
        self.label_to_index = dict((y, x) for x, y in self.index_to_label.items())
        self.config["class_num"] = len(self.index_to_label)
        if self.config["model_type"] == "bert":
            self.tokenizer = BertTokenizer.from_pretrained(config["pretrain_model_path"])
        self.vocab = load_vocab(config["vocab_path"])
        self.config["vocab_size"] = len(self.vocab)
        self.load()


    def load(self):
        self.data = []
        with open(self.path, encoding="utf8") as f:
            for line in f:
                line = json.loads(line)
                tag = line["tag"]
                label = self.label_to_index[tag]
                title = line["title"]
                if self.config["model_type"] == "bert":
                    input_id = self.tokenizer.encode(title, max_length=self.config["max_length"], pad_to_max_length=True)
                else:
                    input_id = self.encode_sentence(title)
                input_id = torch.LongTensor(input_id)
                label_index = torch.LongTensor([label])
                self.data.append([input_id, label_index])
        return

    def encode_sentence(self, text):
        input_id = []
        for char in text:
            input_id.append(self.vocab.get(char, self.vocab["[UNK]"]))
        input_id = self.padding(input_id)
        return input_id

    #补齐或截断输入的序列,使其可以在一个batch内运算
    def padding(self, input_id):
        input_id = input_id[:self.config["max_length"]]
        input_id += [0] * (self.config["max_length"] - len(input_id))
        return input_id

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.data[index]

def load_vocab(vocab_path):
    token_dict = {}
    with open(vocab_path, encoding="utf8") as f:
        for index, line in enumerate(f):
            token = line.strip()
            token_dict[token] = index + 1  #0留给padding位置,所以从1开始
    return token_dict


#用torch自带的DataLoader类封装数据
def load_data(data_path, config, shuffle=True):
    dg = DataGenerator(data_path, config)
    dl = DataLoader(dg, batch_size=config["batch_size"], shuffle=shuffle)
    return dl

if __name__ == "__main__":
    from config import Config
    dg = DataGenerator("valid_tag_news.json", Config)
    print(dg[1])

model:

python 复制代码
import torch.nn as nn
from config import Config
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
from torch.optim import Adam, SGD

TorchModel = AutoModelForSequenceClassification.from_pretrained(Config["pretrain_model_path"])


def choose_optimizer(config, model):
    optimizer = config["optimizer"]
    learning_rate = config["learning_rate"]
    if optimizer == "adam":
        return Adam(model.parameters(), lr=learning_rate)
    elif optimizer == "sgd":
        return SGD(model.parameters(), lr=learning_rate)

evaluate:

python 复制代码
# -*- coding: utf-8 -*-
import torch
from loader import load_data

"""
模型效果测试
"""

class Evaluator:
    def __init__(self, config, model, logger):
        self.config = config
        self.model = model
        self.logger = logger
        self.valid_data = load_data(config["valid_data_path"], config, shuffle=False)
        self.stats_dict = {"correct":0, "wrong":0}  #用于存储测试结果

    def eval(self, epoch):
        self.logger.info("开始测试第%d轮模型效果:" % epoch)
        self.model.eval()
        self.stats_dict = {"correct": 0, "wrong": 0}  # 清空上一轮结果
        for index, batch_data in enumerate(self.valid_data):
            if torch.cuda.is_available():
                batch_data = [d.cuda() for d in batch_data]
            input_ids, labels = batch_data   #输入变化时这里需要修改,比如多输入,多输出的情况
            with torch.no_grad():
                pred_results = self.model(input_ids)[0]
            self.write_stats(labels, pred_results)
        acc = self.show_stats()
        return acc

    def write_stats(self, labels, pred_results):
        # assert len(labels) == len(pred_results)
        for true_label, pred_label in zip(labels, pred_results):
            pred_label = torch.argmax(pred_label)
            # print(true_label, pred_label)
            if int(true_label) == int(pred_label):
                self.stats_dict["correct"] += 1
            else:
                self.stats_dict["wrong"] += 1
        return

    def show_stats(self):
        correct = self.stats_dict["correct"]
        wrong = self.stats_dict["wrong"]
        self.logger.info("预测集合条目总量:%d" % (correct +wrong))
        self.logger.info("预测正确条目:%d,预测错误条目:%d" % (correct, wrong))
        self.logger.info("预测准确率:%f" % (correct / (correct + wrong)))
        self.logger.info("--------------------")
        return correct / (correct + wrong)

main:

python 复制代码
# -*- coding: utf-8 -*-

import torch
import os
import random
import os
import numpy as np
import torch.nn as nn
import logging
from config import Config
from model import TorchModel, choose_optimizer
from evaluate import Evaluator
from loader import load_data
from peft import get_peft_model, LoraConfig, \
    PromptTuningConfig, PrefixTuningConfig, PromptEncoderConfig 


#[DEBUG, INFO, WARNING, ERROR, CRITICAL]
logging.basicConfig(level=logging.INFO, format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

"""
模型训练主程序
"""


seed = Config["seed"]
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)



def main(config):
    #创建保存模型的目录
    if not os.path.isdir(config["model_path"]):
        os.mkdir(config["model_path"])
    #加载训练数据
    train_data = load_data(config["train_data_path"], config)
    #加载模型
    model = TorchModel

    #大模型微调策略
    tuning_tactics = config["tuning_tactics"]
    if tuning_tactics == "lora_tuning":
        peft_config = LoraConfig(
            r=8,
            lora_alpha=32,
            lora_dropout=0.1,
            target_modules=["query", "key", "value"]
        )
    elif tuning_tactics == "p_tuning":
        peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=10)
    elif tuning_tactics == "prompt_tuning":
        peft_config = PromptTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=10)
    elif tuning_tactics == "prefix_tuning":
        peft_config = PrefixTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=10)
    
    
    model = get_peft_model(model, peft_config)
    # print(model.state_dict().keys())

    if tuning_tactics == "lora_tuning":
        # lora配置会冻结原始模型中的所有层的权重,不允许其反传梯度
        # 但是事实上我们希望最后一个线性层照常训练,只是bert部分被冻结,所以需要手动设置
        for param in model.get_submodule("model").get_submodule("classifier").parameters():
            param.requires_grad = True

    # 标识是否使用gpu
    cuda_flag = torch.cuda.is_available()
    if cuda_flag:
        logger.info("gpu可以使用,迁移模型至gpu")
        model = model.cuda()

    #加载优化器
    optimizer = choose_optimizer(config, model)
    #加载效果测试类
    evaluator = Evaluator(config, model, logger)
    #训练
    for epoch in range(config["epoch"]):
        epoch += 1
        model.train()
        logger.info("epoch %d begin" % epoch)
        train_loss = []
        for index, batch_data in enumerate(train_data):
            if cuda_flag:
                batch_data = [d.cuda() for d in batch_data]

            optimizer.zero_grad()
            input_ids, labels = batch_data   #输入变化时这里需要修改,比如多输入,多输出的情况
            output = model(input_ids)[0]
            loss = nn.CrossEntropyLoss()(output, labels.view(-1))
            loss.backward()
            optimizer.step()

            train_loss.append(loss.item())
            if index % int(len(train_data) / 2) == 0:
                logger.info("batch loss %f" % loss)
        logger.info("epoch average loss: %f" % np.mean(train_loss))
        acc = evaluator.eval(epoch)
    model_path = os.path.join(config["model_path"], "%s.pth" % tuning_tactics)
    save_tunable_parameters(model, model_path)  #保存模型权重
    return acc

def save_tunable_parameters(model, path):
    saved_params = {
        k: v.to("cpu")
        for k, v in model.named_parameters()
        if v.requires_grad
    }
    torch.save(saved_params, path)


if __name__ == "__main__":
    main(Config)

pred:

python 复制代码
import torch
import logging
from model import TorchModel
from peft import get_peft_model, LoraConfig, PromptTuningConfig, PrefixTuningConfig, PromptEncoderConfig

from evaluate import Evaluator
from config import Config


logging.basicConfig(level=logging.INFO, format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

#大模型微调策略
tuning_tactics = Config["tuning_tactics"]

print("正在使用 %s"%tuning_tactics)

if tuning_tactics == "lora_tuning":
    peft_config = LoraConfig(
        r=8,
        lora_alpha=32,
        lora_dropout=0.1,
        target_modules=["query", "key", "value"]
    )
elif tuning_tactics == "p_tuning":
    peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=10)
elif tuning_tactics == "prompt_tuning":
    peft_config = PromptTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=10)
elif tuning_tactics == "prefix_tuning":
    peft_config = PrefixTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=10)

#重建模型
model = TorchModel
# print(model.state_dict().keys())
# print("====================")

model = get_peft_model(model, peft_config)
# print(model.state_dict().keys())
# print("====================")

state_dict = model.state_dict()

#将微调部分权重加载
if tuning_tactics == "lora_tuning":
    loaded_weight = torch.load('output/lora_tuning.pth')
elif tuning_tactics == "p_tuning":
    loaded_weight = torch.load('output/p_tuning.pth')
elif tuning_tactics == "prompt_tuning":
    loaded_weight = torch.load('output/prompt_tuning.pth')
elif tuning_tactics == "prefix_tuning":
    loaded_weight = torch.load('output/prefix_tuning.pth')

print(loaded_weight.keys())
state_dict.update(loaded_weight)

#权重更新后重新加载到模型
model.load_state_dict(state_dict)

#进行一次测试
model = model.cuda()
evaluator = Evaluator(Config, model, logger)
evaluator.eval(0)
相关推荐
IT猿手38 分钟前
2025最新群智能优化算法:山羊优化算法(Goat Optimization Algorithm, GOA)求解23个经典函数测试集,MATLAB
人工智能·python·算法·数学建模·matlab·智能优化算法
Jet45052 小时前
玩转ChatGPT:GPT 深入研究功能
人工智能·gpt·chatgpt·deep research·深入研究
毕加锁2 小时前
chatgpt完成python提取PDF简历指定内容的案例
人工智能·chatgpt
Wis4e4 小时前
基于PyTorch的深度学习3——基于autograd的反向传播
人工智能·pytorch·深度学习
西猫雷婶4 小时前
神经网络|(十四)|霍普菲尔德神经网络-Hebbian训练
人工智能·深度学习·神经网络
梦丶晓羽5 小时前
自然语言处理:文本分类
人工智能·python·自然语言处理·文本分类·朴素贝叶斯·逻辑斯谛回归
SuperCreators5 小时前
DeepSeek与浏览器自动化AI Agent构建指南
人工智能·自动化
美狐美颜sdk5 小时前
什么是美颜SDK?从几何变换到深度学习驱动的美颜算法详解
人工智能·深度学习·算法·美颜sdk·第三方美颜sdk·视频美颜sdk·美颜api
訾博ZiBo5 小时前
AI日报 - 2025年3月10日
人工智能
waicsdn_haha5 小时前
Postman v11 安装与API测试入门教程(Windows平台)
人工智能·windows·测试工具·mysql·postman·dbeaver·rest