【vLLM 教程】使用 TPU 安装

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。

更多 vLLM 中文文档及教程可访问 →vllm.hyper.ai/

vLLM 使用 PyTorch XLA 支持 Google Cloud TPU。

依赖环境

  • Google Cloud TPU VM(单主机和多主机)
  • TPU 版本: v5e、v5p、v4
  • Python: 3.10

安装选项:

  1. href="vllm.hyper.ai/docs/gettin...">使用Dockerfile.tpu构建 Docker 镜像
  2. 从源代码构建

使用Dockerfile.tpu 构建 Docker 镜像

Dockerfile.tpu 用于构建具有 TPU 支持的 docker 镜像。

erlang 复制代码
docker build -f Dockerfile.tpu -t vllm-tpu .

您可以使用以下命令运行 docker 镜像:

css 复制代码
# Make sure to add `--privileged --net host --shm-size=16G`.

# 确保添加 `--privileged --net host --shm-size=16G`。

docker run --privileged --net host --shm-size=16G -it vllm-tpu

从源代码构建

您还可以从源代码构建并安装 TPU 后端。

首先,安装依赖:

bash 复制代码
# (Recommended) Create a new conda environment.
#(推荐)创建一个新的 conda 环境。

conda create -n myenv python=3.10 -y
conda activate myenv

# Clean up the existing torch and torch-xla packages.
# 清理现有的 torch 和 torch-xla 包。

pip uninstall torch torch-xla -y

# Install PyTorch and PyTorch XLA.
# 安装 PyTorch 和 PyTorch XLA。

export DATE="20240828"
export TORCH_VERSION="2.5.0"
pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch-${TORCH_VERSION}.dev${DATE}-cp310-cp310-linux_x86_64.whl
pip install https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-${TORCH_VERSION}.dev${DATE}-cp310-cp310-linux_x86_64.whl

# Install JAX and Pallas.
# 安装 JAX 和 Pallas。

pip install torch_xla[tpu] -f https://storage.googleapis.com/libtpu-releases/index.html
pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html

# Install other build dependencies.
# 安装其他构建依赖项。

pip install -r requirements-tpu.txt

下一步,从源代码构建 vLLM。这只需要几秒钟:

ini 复制代码
VLLM_TARGET_DEVICE="tpu" python setup.py develop

注意

由于 TPU 依赖于需要静态形状的 XLA,因此 vLLM 会将可能的输入形状进行分桶处理,并为每个不同的形状编译 XLA 图。第一次运行的编译时间可能需要 20~30 分钟。不过由于 XLA 图会缓存在磁盘中(默认在VLLM_XLA_CACHE_PATH~/.cache/vllm/xla_cache 中),之后的编译时间会减少到大约 5 分钟。

提示

如果您遇到以下错误:

python 复制代码
from torch._C import *  # noqa: F403

ImportError: libopenblas.so.0: cannot open shared object file: No such file or directory

请使用以下命令安装 OpenBLAS:

csharp 复制代码
sudo apt-get install libopenblas-base libopenmpi-dev libomp-dev
相关推荐
0x21121 分钟前
[论文阅读]REPLUG: Retrieval-Augmented Black-Box Language Models
论文阅读·人工智能·语言模型
JOYCE_Leo161 小时前
一文详解卷积神经网络中的卷积层和池化层原理 !!
人工智能·深度学习·cnn·卷积神经网络
老友@1 小时前
小集合 VS 大集合:MySQL 去重计数性能优化
数据库·mysql·性能优化
声声codeGrandMaster2 小时前
django之优化分页功能(利用参数共存及封装来实现)
数据库·后端·python·django
~央千澈~2 小时前
对鸿蒙 Next 系统“成熟论”的深度剖析-优雅草卓伊凡
人工智能
Donvink3 小时前
【视频生成模型】通义万相Wan2.1模型本地部署和LoRA微调
人工智能·深度学习·aigc·音视频
訾博ZiBo3 小时前
AI日报 - 2025年04月29日
人工智能
爱喝奶茶的企鹅3 小时前
Ethan独立开发产品日报 | 2025-04-27
人工智能·程序员·开源
极小狐3 小时前
如何对极狐GitLab 议题进行过滤和排序?
人工智能·git·机器学习·gitlab