【Hadoop】如何理解MapReduce?

MapReduce 是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)Reduce(归约)。通过这种方式,MapReduce 可以高效地并行处理海量数据。

一.MapReduce 的核心概念

1.Map(映射)

  • 将输入数据分割成小块,并对每个小块进行初步处理。
  • 输出键值对(key-value pairs),例如 <单词, 出现次数>

2.Shuffle 和 Sort(洗牌和排序)

  • 将 Map 阶段的输出按照键(key)进行排序和分组。
  • 确保相同键的数据被发送到同一个 Reduce 任务。

3.Reduce(归约)

  • 对 Map 阶段的输出进行汇总和计算。
  • 生成最终的结果,例如每个单词的总出现次数。

二.MapReduce特点

  • 编程模型简单:用户只需编写 Map 和 Reduce 两个函数,框架负责任务调度、数据分发和故障恢复。

  • 横向扩展:MapReduce 可以在数千台机器上运行,处理 PB 级甚至 EB 级数据。可以根据需求动态增加或减少集群规模。

  • **高容错性:**如果某个任务失败,MapReduce 会自动重新调度该任务,确保计算任务的完成。

  • 大规模数据处理:MapReduce 特别适合处理离线批处理任务,如日志分析、数据挖掘等。

  • 高吞吐量:通过并行计算,MapReduce 可以高效地处理大规模数据。

三.MapReduce缺点

  • **不适合实时计算:**MapReduce 的设计目标是批处理,不适合实时或低延迟的场景。
  • 流处理能力有限:虽然可以通过工具(如 Spark Streaming)实现流处理,但原生 MapReduce 的流处理能力较弱。
相关推荐
qq_192779872 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
u0109272713 小时前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊3 小时前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
tudficdew3 小时前
实战:用Python分析某电商销售数据
jvm·数据库·python
sjjhd6524 小时前
Python日志记录(Logging)最佳实践
jvm·数据库·python
Configure-Handler4 小时前
buildroot System configuration
java·服务器·数据库
2301_821369614 小时前
用Python生成艺术:分形与算法绘图
jvm·数据库·python
电商API_180079052475 小时前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
2401_832131955 小时前
Python单元测试(unittest)实战指南
jvm·数据库·python
打工的小王6 小时前
redis(四)搭建哨兵模式:一主二从三哨兵
数据库·redis·缓存