【分布式】聊聊分布式id实现方案和生产经验

对于分布式Id来说,在面试过程中也是高频面试题,所以主要针对分布式id实现方案进行详细分析下。

应用场景

对于无论是单机还是分布式系统来说,对于很多场景需要全局唯一ID,

  • 数据库id唯一性
  • 日志traceId 可以方便找到日志链,一般使用uuid 更多一点
  • 幂等场景下,mq、api接口层面 保证幂等下
  • 业务系统订单id

UUID

最简单的就是使用UUID,UUID的规则是一组32位16进制数字构成,形式就是8-4-4-4-8,主要就是利用当前时间和时钟序列 和 全局唯一的IEEE机器识别。

csharp 复制代码
UUID uuid = UUID.randomUUID();

307e16d0-26d4-4fff-ab06-a9397b8369fb

优点:实现简单,全局唯一,缺点是不具有连续性,并且占用空间比较大,对于mysql主键来说不具备友好。

数据库自增ID

就目前公司内部,其实还是使用的数据库自增id进行处理,对于数据库来说的话,就是多个实例操作表自增id,对于业务来说使用自定义时间戳来实现。

还有一种方式就是创建一个单独的表,通过数据库本身的自增id来保证。

csharp 复制代码
CREATE TABLE `test_order_id`  (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `title` char(1) NOT NULL,
  PRIMARY KEY (`id`),
    UNIQUE KEY `title` (`title`)
) ENGINE = InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET =utf8;

BEGIN;

REPLACE INTO test_order_id (title) values ('p') ;
SELECT LAST_INSERT_ID();

COMMIT;

这种方式的优点就是 实现比较简单,但是缺点就是不具备高可用性,如果mysql是单节点部署的话,那么整体就不可用。

高可用数据库实例

部署多个数据库实例,通过设置不同的自增,比如mysql实例1,自增是2,从1开始,mysql实例2 从2开始,那么就是 实例1 : 1、3、5、7,实例2: 2、4、6、8。

对于并发量不高的场景来说,可以解决,但是对于高并发场景来说,数据库实例就是成为瓶颈。如果1秒1000个订单,那么就需要频繁访问1000次数据库,显然这个网络以及IO就成为短板。

号段模型

号段模式,其实就是通过在一个表中唯一一条记录,然后通过业务区分,每次获取一个区间的号,这样比如获取1-1000的号段,那么就只需要交互一次数据库,并且通过添加version来避免出现并发修改数据的问题。

Redis

除了借助于mysql,还可以通过redis的自增 incr命令来实现自增ID,并且可以部署一主多从的架构,来保证高可用性。

csharp 复制代码
    public long nextId(String item){
        // 1.生成时间戳
        LocalDateTime now = LocalDateTime.now();
        // 格林威治时间差
        long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
        // 我们需要获取的 时间戳 信息
        long timestamp = nowSecond - BEGIN_TIMESTAMP;
        // 2.生成序号 --》 从Redis中获取
        // 当前当前的日期
        String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
        // 获取对应的自增的序号
        Long increment = redisTemplate.opsForValue().increment("id:" + item + ":" + date);
        return timestamp << 32 | increment;
    }

具体原理其实就是 当前时间戳-制定时间 << 32 | 自增的id 这样输出的就是连续的id了

雪花算法

雪花算法整体结构就是 64位 0-41位位毫秒值,5位是数据中心id,5位机器id,最后12位是毫秒级别内的自增id

分析源码 可以大概了解其核心流程

雪花算法时钟回拨

在实际的生产环境中,分布式环境下,其实时钟是很难保证统一的,所以就可能实现时间不一样的情况,导致时钟回拨问题,我们来分析两类问题

情况1:UTC时间是8点01,实例机器是8点整

情况2:UTC时间是8点01 实例机器是8点03

对于情况1来说,其实就调整一下时间就好,1分钟内的id生成不用就可以。但是对于第二种情况,相当于需要从3分回退到01分,那么其中的2分钟的时间已经生成了对应的id,如果在次生成,就会出现id重复的问题?

如何解决呢

其实比较简单,大方向就是如果时间短,那么就等得阻塞对应的时间就可以,如果超过1S以上,服务直接下线,通过其他实例获取id就可以。

其他

业界有主流的其他方案,具体可以详细看

百度、美团对应的解决方案,这里自己查看对应文档就可以。

总结

从上面的分析可以知道 目前业界主流的方案,我们来抽丝剥茧下,对于设计一个分布式id来说,需要哪些核心点

1.需要顺序 这样可以简单清晰

2.依赖的服务需要高可用、高性能

3.全局唯一

4.有具体的业务含义,比如针对订单号:11xxx 开始,还款订单21xxx,借款订单31xxx。就比较清晰。

相关推荐
龙山云仓9 小时前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
未来龙皇小蓝9 小时前
RBAC前端架构-02:集成Vue Router、Vuex和Axios实现基本认证实现
前端·vue.js·架构
Tadas-Gao9 小时前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm
会算数的⑨9 小时前
Kafka知识点问题驱动式的回顾与复习——(一)
分布式·后端·中间件·kafka
张小凡vip9 小时前
Kafka--使用 Kafka Connect 导入/导出数据
分布式·kafka
回忆是昨天里的海9 小时前
kafka概述
分布式·kafka
知识即是力量ol10 小时前
初识 Kafka(一):分布式流平台的定义、核心优势与架构全景
java·分布式·kafka·消息队列
nbsaas-boot10 小时前
Pipeline + Saga 分布式扩展规范
分布式
creator_Li10 小时前
分布式IM聊天系统的消息可靠性
分布式·im
啊森要自信10 小时前
CANN ops-cv:揭秘视觉算子的硬件感知优化与内存高效利用设计精髓
人工智能·深度学习·架构·transformer·cann