NPU上运行onnxruntime

1 问题背景

在Ascend环境上,使用onnxruntime推理时,报错:

vbnet 复制代码
/onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1193 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load library libonnxruntime_providers_cuda.so 
with error: libcudart.so.11.0: cannot open shared object file: No such file or directorys

显示的是cuda的组件找不到。由于是Ascend环境,肯定是没有GPU的,很明显是onnxruntime的包装错了。

sql 复制代码
pip show onnxruntime-gpu

通过如上命令,可以看到环境上确实安装的是gpu版本的。这里先卸载onnxruntime-gpu。

2 解决办法

通过查找onnxruntime社区,可以发现npu已经对onnxruntime进行了适配,参考如下文档:

onnxruntime/docs/execution-providers/community-maintained/CANN-ExecutionProvider.md at gh-pages · microsoft/onnxruntime

那么该如何才能构建onnxruntime适配Ascend上的whl包呢?

这里提供源码构建的办法:

2.1 克隆源码

bash 复制代码
git clone https://github.com/microsoft/onnxruntime.git
cd onnxruntime

2.2 构建whl包

注意--use_cann参数

bash 复制代码
# 先初始化CANN环境
source /usr/local/Ascend/ascend-toolkit/set_env.sh
 
# 执行build脚本
./build.sh --config Release --build_shared_lib --parallel --use_cann --build_wheel

若构建成功,whl包会生成在build/Linux/Release/dist/目录下。安装onnxruntime-cann

复制代码
pip3 install onnxruntime_cann-x.xx.x-xxxx-xxxxx-xxxxx_xxx_xx.whl

3 推理示例

ini 复制代码
import numpy as np
import onnxruntime as ort
 
# 模型路径
model = "./resnet34.onnx"
 
# 以CANN作为EP的配置,参数说明可见:https://github.com/microsoft/onnxruntime/blob/gh-pages/docs/execution-providers/community-maintained/CANN-ExecutionProvider.md
providers = [
    ("CANNExecutionProvider", {
        "device_id": 0,                                 
        "arena_extend_strategy": "kNextPowerOfTwo",     
        "npu_mem_limit": 4 * 1024 * 1024 * 1024,
        "enable_cann_graph": True,
    }),
]
 
# options可以用来对推理session进行配置,例如开启profiling功能
options = ort.SessionOptions()
 
# 创建推理session
session = ort.InferenceSession(model, providers=providers, sess_options=options)
 
# 构造纯推理数据
ndata = np.zeros([1, 3, 224, 224], dtype=np.float32)
 
# 执行推理
session.run(["class"], {"image": ndata}])
相关推荐
WenGyyyL几秒前
研读论文——《用于3D工业异常检测的自监督特征自适应》
人工智能·python·深度学习·机器学习·计算机视觉·3d
fydw_7155 分钟前
音频生成技术的前沿探索:从语音合成到智能Podcast
人工智能·音视频·语音识别
选型宝7 分钟前
腾讯怎样基于DeepSeek搭建企业应用?怎样私有化部署满血版DS?直播:腾讯云X DeepSeek!
人工智能·ai·云计算·腾讯云·选型宝
多巴胺与内啡肽.33 分钟前
OpenCV进阶操作:人脸检测、微笑检测
人工智能·opencv·计算机视觉
Wnq1007236 分钟前
基于 NanoDet 的工厂巡检机器人目标识别系统研究与实现
人工智能·机器学习·计算机视觉·目标跟踪·机器人·巡检机器人
一年春又来43 分钟前
AI-02a5a6.神经网络-与学习相关的技巧-批量归一化
人工智能·神经网络·学习
kovlistudio1 小时前
机器学习第十讲:异常值检测 → 发现身高填3米的不合理数据
人工智能·机器学习
马拉AI1 小时前
解锁Nature发文小Tips:LSTM、CNN与Attention的创新融合之路
人工智能·cnn·lstm
sufu10651 小时前
SpringAI更新:废弃tools方法、正式支持DeepSeek!
人工智能·后端
知舟不叙1 小时前
基于OpenCV中的图像拼接方法详解
人工智能·opencv·计算机视觉·图像拼接