自适应集群协作提升大语言模型医疗决策支持能力

摘要

大语言模型(LLMs)的协作能力在自然语言处理系统中已被证明有效,对医疗健康领域发展具有重要潜力。然而,现有方法缺乏明确的组件选择规则,需依赖人工干预或临床特定验证。此外,当前架构严重依赖预定义的LLM集群,其中部分模型在医疗决策支持场景中表现不佳,导致协作失效。为此,提出一种自适应集群协作方法,结合自多样性和跨一致性最大化机制:

  1. 自多样性:通过计算单个LLM内部成对输出的模糊匹配值作为其自多样性指标,以无训练方式优先选择高自多样性值的LLM作为集群组件;
  2. 跨一致性:首先测量最高自多样性LLM与其他模型的跨一致性值,随后逐步屏蔽具有最低跨一致性的LLM,以消除协作传播中的潜在不一致输出。

在NEJMQA和MMLU-Pro-health两个专业医学数据集上的实验表明,该方法在面向医师的专业领域中表现优异。例如,在NEJMQA数据集上,其准确率达到所有学科公开官方及格线,其中妇产科领域的ACC达65.47%,显著优于某机构GPT-4的56.12%。

核心方法

  1. 自多样性筛选

    • 基于模糊匹配算法量化LLM输出的内部差异性;
    • 构建高多样性模型集群,减少冗余计算。
  2. 跨一致性优化

    • 动态评估集群成员间的输出一致性;
    • 通过迭代屏蔽低一致性节点提升整体协作效率。

实验结果

  • 数据集:NEJMQA(临床问答)、MMLU-Pro-health(多学科医学评估);
  • 基线对比:超越某机构GPT-4、某中心PaLM等主流模型;
  • 关键指标:妇产科领域ACC提升9.35%,总体误诊率降低18.7%。

应用价值

该方法为医疗AI系统提供了可扩展的协作框架,尤其适用于诊断一致性要求严格的场景,如罕见病识别和多学科会诊。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
新缸中之脑6 分钟前
氛围编程一个全栈AI交易应用
人工智能
码云数智-大飞10 分钟前
Oracle RAS:AI时代守护企业数据安全的智能盾牌
数据库·人工智能·oracle
余俊晖10 分钟前
Qwen3-VL-0.6B?Reyes轻量化折腾:一个从0到1开始训练的0.6B参数量的多模态大模型
人工智能·自然语言处理·多模态
zuozewei14 分钟前
7D-AI系列:DeepSeek Engram 架构代码分析
人工智能·架构
love530love17 分钟前
技术复盘:llama-cpp-python CUDA 编译实战 (Windows)
人工智能·windows·python·llama·aitechlab·cpp-python·cuda版本
Katecat9966322 分钟前
基于YOLO11-HAFB-1的五种羊品种分类识别系统详解
人工智能·数据挖掘
旧日之血_Hayter22 分钟前
Java线程池实战:高效并发编程技巧
人工智能
hit56实验室33 分钟前
【易经系列】《屯卦》六二:屯如邅如,乘马班如,匪寇,婚媾。女子贞不字,十年乃字。
人工智能
丝斯20111 小时前
AI学习笔记整理(67)——大模型的Benchmark(基准测试)
人工智能·笔记·学习
咚咚王者1 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习