自适应集群协作提升大语言模型医疗决策支持能力

摘要

大语言模型(LLMs)的协作能力在自然语言处理系统中已被证明有效,对医疗健康领域发展具有重要潜力。然而,现有方法缺乏明确的组件选择规则,需依赖人工干预或临床特定验证。此外,当前架构严重依赖预定义的LLM集群,其中部分模型在医疗决策支持场景中表现不佳,导致协作失效。为此,提出一种自适应集群协作方法,结合自多样性和跨一致性最大化机制:

  1. 自多样性:通过计算单个LLM内部成对输出的模糊匹配值作为其自多样性指标,以无训练方式优先选择高自多样性值的LLM作为集群组件;
  2. 跨一致性:首先测量最高自多样性LLM与其他模型的跨一致性值,随后逐步屏蔽具有最低跨一致性的LLM,以消除协作传播中的潜在不一致输出。

在NEJMQA和MMLU-Pro-health两个专业医学数据集上的实验表明,该方法在面向医师的专业领域中表现优异。例如,在NEJMQA数据集上,其准确率达到所有学科公开官方及格线,其中妇产科领域的ACC达65.47%,显著优于某机构GPT-4的56.12%。

核心方法

  1. 自多样性筛选

    • 基于模糊匹配算法量化LLM输出的内部差异性;
    • 构建高多样性模型集群,减少冗余计算。
  2. 跨一致性优化

    • 动态评估集群成员间的输出一致性;
    • 通过迭代屏蔽低一致性节点提升整体协作效率。

实验结果

  • 数据集:NEJMQA(临床问答)、MMLU-Pro-health(多学科医学评估);
  • 基线对比:超越某机构GPT-4、某中心PaLM等主流模型;
  • 关键指标:妇产科领域ACC提升9.35%,总体误诊率降低18.7%。

应用价值

该方法为医疗AI系统提供了可扩展的协作框架,尤其适用于诊断一致性要求严格的场景,如罕见病识别和多学科会诊。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
一只鹿鹿鹿12 分钟前
【网络安全】信息网络安全建设方案(WORD)
人工智能·安全·spring·web安全·低代码
小拇指~14 分钟前
梯度下降的基本原理
人工智能·算法·计算机视觉
AndrewHZ34 分钟前
【图像处理基石】如何对遥感图像进行实例分割?
图像处理·人工智能·python·大模型·实例分割·detectron2·遥感图像分割
CodeShare1 小时前
某中心将举办机器学习峰会
人工智能·机器学习·数据科学
那就摆吧1 小时前
U-Net vs. 传统CNN:为什么医学图像分割需要跳过连接?
人工智能·神经网络·cnn·u-net·医学图像
深度学习实战训练营1 小时前
中英混合的语音识别XPhoneBERT 监督的音频到音素的编码器结合 f0 特征LID
人工智能·音视频·语音识别
WADesk---瓜子2 小时前
用 AI 自动生成口型同步视频,短视频内容也能一人完成
人工智能·音视频·语音识别·流量运营·用户运营
星环科技TDH社区版2 小时前
AI Agent 的 10 种应用场景:物联网、RAG 与灾难响应
人工智能·物联网
时序之心2 小时前
ICML 2025 | 深度剖析时序 Transformer:为何有效,瓶颈何在?
人工智能·深度学习·transformer
希艾席帝恩2 小时前
拥抱智慧物流时代:数字孪生技术的应用与前景
大数据·人工智能·低代码·数字化转型·业务系统