llama.cpp 利用intel集成显卡xpu加速推理

用 llama.cpp 调用 Intel 的集成显卡 XPU 来提升推理效率.

驱动及依赖库

安装 Intel oneAPI Base Toolkit,确保显卡驱动支持 SYCL 和 oneAPI。

复制代码
#安装 dpcpp-cpp-rt、mkl-dpcpp、onednn 等库:
pip install dpcpp-cpp-rt==2024.0.2 mkl-dpcpp==2024.0.0 onednn==2024.0.0

重新安装 llama.cpp

如果已经安装过llama.cpp, 则要增加--force-reinstall 重新安装 。另外 增加-DLLAMA_SYCL=ON, 以打开对intel 集成显卡的支持。

-DLLAMA_AVX: 为启用CPU的AVX指令集加速

-DLLAMA_SYCL=ON: intel 集成显卡的支持。

复制代码
$env:CMAKE_ARGS = "-DLLAMA_SYCL=ON -DLLAMA_AVX=on"
pip install --force-reinstall  --no-cache-dir llama-cpp-python   #如果安装失败,可更换版本,eg. 0.2.23
pip install --force-reinstall  --no-cache-dir llama-cpp-python==0.2.23

验证

配置n_gpu_layers > 0调用模型

复制代码
>>> from llama_cpp import Llama
# 初始化模型,指定模型路径和GPU层数
>>> llm = Llama(model_path="llama-2-7b-chat.Q4_K_M.gguf", n_ctx=2048,n_threads=8, n_gpu_layers=32)
>>> print(llm("who are you!", max_tokens=50)["choices"][0]["text"])  
>>> print(llm("请介绍一下人工智能的发展历史。", max_tokens=256)["choices"][0]["text"])  

运行时间对比cpu vx xpu

n_gpu_layers分别配置0和32, 来启动llama模型,请求相同的问题"解释一下llama_cpp", xpu方案在输出内容更长的情况下,耗时更短。178s vs 207s .

复制代码
用户:解释一下llama_cpp

llama_print_timings:        load time =   10713.40 ms
llama_print_timings:      sample time =     297.97 ms /   500 runs   (    0.60 ms per token,  1678.00 tokens per second)
llama_print_timings: prompt eval time =   10713.22 ms /    67 tokens (  159.90 ms per token,     6.25 tokens per second)
llama_print_timings:        eval time =  163259.65 ms /   499 runs   (  327.17 ms per token,     3.06 tokens per second)
llama_print_timings:       total time =  178246.50 ms

助手(耗时178.25s):
  Certainly! llama_cpp is a programming language that is designed to be easy to use and understand, while also being powerful enough to build complex applications. It is based on the C++ programming language, but has several features that make it more accessible to beginners and non-experts.
Here are some key features of llama_cpp:
1. Syntax: LLama_cpp has a simplified syntax compared to C++, which makes it easier to read and write code. For example, in LLama_cpp, you don't need to use parentheses for function calls, and you can omit the semicolon at the end of statements.
2. Type Inference: LLama_cpp has type inference, which means that you don't need to explicitly specify the types of variables or function arguments. The compiler can infer the types based on the context.
3. Functional Programming: LLama_cpp supports functional programming concepts such as higher-order functions, closures, and immutable data structures. This makes it easier to write pure functions that are easy to reason about and test.     
4. Object-Oriented Programming: LLama_cpp also supports object-oriented programming (OOP) concepts such as classes, objects, inheritance, and polymorphism.     
5. Concise Code: LLama_cpp aims to be concise and efficient, allowing you to write code that is easy to read and understand while still being compact and efficient.
6. Cross-Platform: LLama_cpp is designed to be cross-platform, meaning it can run on multiple operating systems without modification. This makes it easier to write code that can be used on different platforms.
7. Extensive Standard Library: LLama_cpp has an extensive standard library that includes support for common data structures and algorithms, as well as a range of other useful functions.
8. Supportive Community: LLama_cpp has a growing community of developers and users who are actively contributing to the language and its ecosystem. This means there are many resources available online, including tutorials, documentation, and forums where you can ask questions and get help.
Overall, llama_cpp is a language that is designed to be easy to learn and use, while still being powerful enough to build complex applications. Its simplified syntax and type inference make it accessible to beginners, while its support for 
相关推荐
新辞旧梦28 分钟前
企业微信自建消息推送应用
服务器·python·企业微信
虎头金猫32 分钟前
如何解决 403 错误:请求被拒绝,无法连接到服务器
运维·服务器·python·ubuntu·chatgpt·centos·bug
摸鱼仙人~1 小时前
机器学习常用评价指标
人工智能·机器学习
一点.点2 小时前
WiseAD:基于视觉-语言模型的知识增强型端到端自动驾驶——论文阅读
人工智能·语言模型·自动驾驶
fanstuck3 小时前
从知识图谱到精准决策:基于MCP的招投标货物比对溯源系统实践
人工智能·知识图谱
dqsh063 小时前
树莓派5+Ubuntu24.04 LTS串口通信 保姆级教程
人工智能·python·物联网·ubuntu·机器人
打小就很皮...4 小时前
编写大模型Prompt提示词方法
人工智能·语言模型·prompt
Aliano2174 小时前
Prompt(提示词)工程师,“跟AI聊天”
人工智能·prompt
weixin_445238125 小时前
第R8周:RNN实现阿尔兹海默病诊断(pytorch)
人工智能·pytorch·rnn
KingDol_MIni5 小时前
ResNet残差神经网络的模型结构定义(pytorch实现)
人工智能·pytorch·神经网络