下面将为你详细介绍如何开发一个小样本增量学习程序。我们将使用 PyTorch 框架,并以一个简单的图像分类任务为例进行说明。
整体思路
- 数据集准备:将数据集划分为旧类和新类,模拟增量学习的场景。
- 模型定义:定义一个简单的卷积神经网络作为分类器。
- 旧类训练:在旧类数据集上训练模型。
- 增量学习:使用小样本新类数据对模型进行增量训练,采用一些技术(如知识蒸馏)来缓解新类损失度高的问题。
- 测试:在新类和旧类数据集上测试模型的性能。
代码实现
python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Subset
# 定义简单的卷积神经网络
class SimpleCNN(nn.Module):
def __init__(self, num_classes):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载 MNIST 数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)
# 划分旧类和新类
old_classes = [0, 1, 2, 3, 4]
new_classes = [5, 6, 7, 8, 9]
old_train_indices = [i for i, (_, label) in enumerate(train_dataset) if label in old_classes]
new_train_indices = [i for i, (_, label) in enumerate(train_dataset) if label in new_classes]
old_test_indices = [i for i, (_, label) in enumerate(test_dataset) if label in old_classes]
new_test_indices = [i for i, (_, label) in enumerate(test_dataset) if label in new_classes]
old_train_dataset = Subset(train_dataset, old_train_indices)
new_train_dataset = Subset(train_dataset, new_train_indices)
old_test_dataset = Subset(test_dataset, old_test_indices)
new_test_dataset = Subset(test_dataset, new_test_indices)
# 小样本新类数据
small_sample_size = 100
small_sample_indices = new_train_indices[:small_sample_size]
small_sample_dataset = Subset(train_dataset, small_sample_indices)
# 数据加载器
old_train_loader = DataLoader(old_train_dataset, batch_size=64, shuffle=True)
small_sample_loader = DataLoader(small_sample_dataset, batch_size=64, shuffle=True)
old_test_loader = DataLoader(old_test_dataset, batch_size=64, shuffle=False)
new_test_loader = DataLoader(new_test_dataset, batch_size=64, shuffle=False)
# 初始化模型
model = SimpleCNN(num_classes=10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 旧类训练
num_epochs = 5
for epoch in range(num_epochs):
model.train()
for batch_idx, (data, target) in enumerate(old_train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')
# 增量学习
teacher_model = model.clone() # 克隆旧模型作为教师模型
num_epochs_incremental = 3
for epoch in range(num_epochs_incremental):
model.train()
for batch_idx, (data, target) in enumerate(small_sample_loader):
optimizer.zero_grad()
output = model(data)
teacher_output = teacher_model(data)
# 知识蒸馏损失
distillation_loss = nn.KLDivLoss()(nn.functional.log_softmax(output / 2.0, dim=1),
nn.functional.softmax(teacher_output / 2.0, dim=1))
classification_loss = criterion(output, target)
loss = classification_loss + distillation_loss
loss.backward()
optimizer.step()
print(f'Incremental Epoch {epoch+1}/{num_epochs_incremental}, Loss: {loss.item()}')
# 测试
def test(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
accuracy = 100 * correct / total
return accuracy
old_accuracy = test(model, old_test_loader)
new_accuracy = test(model, new_test_loader)
print(f'Old class accuracy: {old_accuracy}%')
print(f'New class accuracy: {new_accuracy}%')
代码解释
- 数据集准备 :使用
torchvision
加载 MNIST 数据集,并将其划分为旧类和新类。同时,从新类数据中选取小样本数据用于增量学习。 - 模型定义 :定义了一个简单的卷积神经网络
SimpleCNN
,包含两个卷积层和两个全连接层。 - 旧类训练:在旧类数据集上训练模型,使用交叉熵损失函数和 Adam 优化器。
- 增量学习:克隆旧模型作为教师模型,使用知识蒸馏技术将旧模型的知识传递给新模型,同时计算分类损失和蒸馏损失。
- 测试:在旧类和新类数据集上测试模型的准确率。
注意事项
- 此代码仅为示例,实际应用中可能需要根据具体任务调整模型结构、超参数等。
- 知识蒸馏是一种缓解新类损失度高的方法,还可以尝试其他技术,如元学习、少样本学习等。
你可以将上述代码复制到 PyCharm 中运行,确保已经安装了 PyTorch 和 torchvision 库。