李沐《动手学深度学习》——14.9. 用于预训练BERT的数据集——wiki数据集问题以及存在的其他问题

问题1:出现"file is not a zip file"

原因是链接已经失效。

解决方法:打开下面链接自行下载,需要魔法。下载完解压到特定位置。

下载链接:项目首页 - Wikitext-2-v1数据包下载:Wikitext-2-v1 数据包下载本仓库提供了一份Wikitext-2-v1的标准数据包,方便无法通过亚马逊网址下载的用户获取 - GitCode

修改load_data_wiki函数中data_dir的路径,如下:

复制代码
#@save
def load_data_wiki(batch_size, max_len):
    """加载WikiText-2数据集"""
    num_workers = d2l.get_dataloader_workers()
    #data_dir = = d2l.download_extract('wikitext-2', 'wikitext-2')  
    data_dir = 'D:\data\wikitext-2-v1\wikitext-2'  # 使用正斜杠避免转义问题
    
    paragraphs = _read_wiki(data_dir)
    train_set = _WikiTextDataset(paragraphs, max_len)
    train_iter = torch.utils.data.DataLoader(train_set, batch_size,
                                        shuffle=True, num_workers=0)
    return train_iter, train_set.vocab

问题2:'gbk' codec can't decode byte 0xae in position 96: illegal multibyte sequence

原因是读取文件的时候编码方式不一样。

解决方法:修改**def _read_wiki(data_dir)**函数,open里添加encoding = "utf-8"编码方式。

复制代码
#@save
def _read_wiki(data_dir):
    file_name = os.path.join(data_dir, 'wiki.train.tokens')
    with open(file_name, 'r',encoding = "utf-8") as f:
        lines = f.readlines()
    # 大写字母转换为小写字母
    paragraphs = [line.strip().lower().split(' . ')
                  for line in lines if len(line.split(' . ')) >= 2]
    random.shuffle(paragraphs)
    return paragraphs

问题3 :一直卡在load_data_wiki运行不下去

原因是上面函数load_data_wiki的多线程问题,在load_data_wiki函数里令num_workers=0(如下),即可解决。

复制代码
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)

for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,
     mlm_Y, nsp_y) in train_iter:
    print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,
          pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,
          nsp_y.shape)
    break

#@save
def load_data_wiki(batch_size, max_len):
    """加载WikiText-2数据集"""
    num_workers = d2l.get_dataloader_workers()
    #data_dir = = d2l.download_extract('wikitext-2', 'wikitext-2-v1')
    data_dir = 'D:\data\wikitext-2-v1\wikitext-2'
    
    paragraphs = _read_wiki(data_dir)
    train_set = _WikiTextDataset(paragraphs, max_len)
    train_iter = torch.utils.data.DataLoader(train_set, batch_size,
                                        shuffle=True, num_workers=0)
    return train_iter, train_set.vocab
相关推荐
东方芷兰44 分钟前
LLM 笔记 —— 01 大型语言模型修炼史(Self-supervised Learning、Supervised Learning、RLHF)
人工智能·笔记·神经网络·语言模型·自然语言处理·transformer
腾飞开源1 小时前
02_钉钉消息处理流程设计
人工智能·钉钉·agent智能体·ai智能体开发·全网首发·新课上线·消息处理器
K24B;1 小时前
多模态大语言模型OISA
人工智能·语言模型·语音识别·分割·多模态大语言模型
K24B;1 小时前
多模态大语言模型LISA
人工智能·语言模型·分割·多模态大语言模型
AI视觉网奇4 小时前
rknn yolo11 推理
前端·人工智能·python
AI数据皮皮侠5 小时前
中国各省森林覆盖率等数据(2000-2023年)
大数据·人工智能·python·深度学习·机器学习
西柚小萌新6 小时前
【深入浅出PyTorch】--3.1.PyTorch组成模块1
人工智能·pytorch·python
鑫宝的学习笔记7 小时前
Vmware虚拟机联网问题,显示:线缆已拔出!!!
人工智能·ubuntu
小李独爱秋8 小时前
机器学习中的聚类理论与K-means算法详解
人工智能·算法·机器学习·支持向量机·kmeans·聚类
comli_cn8 小时前
GSPO论文阅读
论文阅读·人工智能