2025最新群智能优化算法:基于RRT的优化器(RRT-based Optimizer,RRTO)求解23个经典函数测试集,MATLAB

一、基于RRT的优化器

基于RRT的优化器(RRT-based Optimizer,RRTO)是2025年提出的一种新型元启发式算法。其受常用于机器人路径规划的快速探索随机树(RRT)算法的搜索机制启发,首次将RRT算法的概念与元启发式算法相结合。RRTO的关键创新之处在于其三种位置更新策略:自适应步长游荡、基于绝对差值的自适应步长以及基于边界的自适应步长。这些策略使得RRTO能够在高效探索搜索空间的同时,引导种群朝着高质量解的方向进化。

参考文献:

1\]G. Lai, T. Li and B. Shi, "RRT-based Optimizer: A novel metaheuristic algorithm based on rapidly-exploring random trees algorithm," in IEEE Access, doi: 10.1109/ACCESS.2025.3547537. ### 二、23个函数介绍 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/35fd656358c747108580aff6af5528db.png) 参考文献: \[1\] Yao X, Liu Y, Lin G M. Evolutionary programming made faster\[J\]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102. ### 三、部分代码及结果 ```dart clear; clc; close all; warning off all; SearchAgents_no=50; %Number of search solutions Max_iteration=500; %Maximum number of iterations Func_name='F1'; % Name of the test function % Load details of the selected benchmark function [lb,ub,dim,fobj]=Get_F(Func_name); tic; [Best_score,Best_pos,cg_curve]=(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); tend=toc; % figure('Position',[500 500 901 345]) %Draw search space subplot(1,2,1); func_plot(Func_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Func_name,'( x_1 , x_2 )']) %Draw objective space subplot(1,2,2); semilogy(cg_curve,'Color','m',LineWidth=2.5) title(Func_name) % title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far'); axis tight grid on box on legend('') display(['The running time is:', num2str(tend)]); display(['The best fitness is:', num2str(Best_score)]); display(['The best position is: ', num2str(Best_pos)]); ``` ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/4c9de42d61a0499a92509c5aa6ec1b30.png) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/ac64f268d2b948e886a5a8426af29753.png) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/e62abc5a27574eef811a158176d37e20.png) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/938d3ac63c2e45599d64fd82a08b8337.png) ### 四、完整MATLAB代码见下方名片

相关推荐
晓13138 小时前
第七章 【C语言篇:文件】 文件全面解析
linux·c语言·开发语言
愚者游世8 小时前
Delegating Constructor(委托构造函数)各版本异同
开发语言·c++·程序人生·面试·改行学it
想你依然心痛8 小时前
ModelEngine·AI 应用开发实战:从智能体到可视化编排的全栈实践
人工智能·智能体·ai应用·modelengine
KIKIiiiiiiii8 小时前
微信个人号API二次开发中的解决经验
java·人工智能·python·微信
梵刹古音8 小时前
【C语言】 指针基础与定义
c语言·开发语言·算法
哈哈你是真的厉害8 小时前
解构 AIGC 的“核动力”引擎:华为 CANN 如何撑起万亿参数的大模型时代
人工智能·aigc·cann
Ekehlaft8 小时前
这款国产 AI,让 Python 小白也能玩转编程
开发语言·人工智能·python·ai·aipy
哈__8 小时前
CANN多模型并发部署方案
人工智能·pytorch
rit84324998 小时前
MATLAB中Teager能量算子提取与解调信号的实现
开发语言·matlab
予枫的编程笔记8 小时前
【Linux入门篇】Linux运维必学:Vim核心操作详解,告别编辑器依赖
linux·人工智能·linux运维·vim操作教程·程序员工具·编辑器技巧·新手学vim