2025最新群智能优化算法:基于RRT的优化器(RRT-based Optimizer,RRTO)求解23个经典函数测试集,MATLAB

一、基于RRT的优化器

基于RRT的优化器(RRT-based Optimizer,RRTO)是2025年提出的一种新型元启发式算法。其受常用于机器人路径规划的快速探索随机树(RRT)算法的搜索机制启发,首次将RRT算法的概念与元启发式算法相结合。RRTO的关键创新之处在于其三种位置更新策略:自适应步长游荡、基于绝对差值的自适应步长以及基于边界的自适应步长。这些策略使得RRTO能够在高效探索搜索空间的同时,引导种群朝着高质量解的方向进化。

参考文献:

1\]G. Lai, T. Li and B. Shi, "RRT-based Optimizer: A novel metaheuristic algorithm based on rapidly-exploring random trees algorithm," in IEEE Access, doi: 10.1109/ACCESS.2025.3547537. ### 二、23个函数介绍 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/35fd656358c747108580aff6af5528db.png) 参考文献: \[1\] Yao X, Liu Y, Lin G M. Evolutionary programming made faster\[J\]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102. ### 三、部分代码及结果 ```dart clear; clc; close all; warning off all; SearchAgents_no=50; %Number of search solutions Max_iteration=500; %Maximum number of iterations Func_name='F1'; % Name of the test function % Load details of the selected benchmark function [lb,ub,dim,fobj]=Get_F(Func_name); tic; [Best_score,Best_pos,cg_curve]=(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); tend=toc; % figure('Position',[500 500 901 345]) %Draw search space subplot(1,2,1); func_plot(Func_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Func_name,'( x_1 , x_2 )']) %Draw objective space subplot(1,2,2); semilogy(cg_curve,'Color','m',LineWidth=2.5) title(Func_name) % title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far'); axis tight grid on box on legend('') display(['The running time is:', num2str(tend)]); display(['The best fitness is:', num2str(Best_score)]); display(['The best position is: ', num2str(Best_pos)]); ``` ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/4c9de42d61a0499a92509c5aa6ec1b30.png) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/ac64f268d2b948e886a5a8426af29753.png) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/e62abc5a27574eef811a158176d37e20.png) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/938d3ac63c2e45599d64fd82a08b8337.png) ### 四、完整MATLAB代码见下方名片

相关推荐
云边云科技1 分钟前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售
audyxiao00111 分钟前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
钢铁男儿16 分钟前
Python 正则表达式实战:解析系统登录与进程信息
开发语言·python·正则表达式
Monkey的自我迭代28 分钟前
机器学习总复习
人工智能·机器学习
大千AI助手28 分钟前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
不会学习?29 分钟前
算法03 归并分治
算法
用户51914958484537 分钟前
耶稣蓝队集体防护Bash脚本:多模块协同防御实战
人工智能·aigc
野生技术架构师38 分钟前
2025年中高级后端开发Java岗八股文最新开源
java·开发语言
☺����1 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码1
人工智能·python·音视频
NuyoahC1 小时前
笔试——Day43
c++·算法·笔试