机器学习(李宏毅)——Auto-Encoder

一、前言

本文章作为学习2023年《李宏毅机器学习课程》的笔记,感谢台湾大学李宏毅教授的课程,respect!!!

二、大纲

  1. Basic Idea of Auto-encoder
  2. Feature Disentanglement
  3. Discrete Latent Representation
  4. More Applications

三、Basic Idea of Auto-encoder

Self-supervised Learning Framework

在讲Auto-encoder之前,先再温习一下Self-supervised Learning Framework,即自监督学习框架。

最典型的就是BERT模型了,可参照本人BERT博客。框架如下图所示:

一言以蔽之:有一堆没有标注的资料data,把资料的部分遮住,丢到预训练模型里面,期待输出和遮住部分越接近越好。换句话说就是在做填空题。然后预训练模型可针对不同下游任务进行微调和应用。

Auto-encoder

Auto-encoder也可以看成是Self-supervised Learning的一种,虽然Auto-encoder比Self-supervised Learning提出的还要早。

举例而言,将Auto-encoder应用在图像生成领域,那就是类似于Cycle GAN的思想,如下图:

说明:有一堆未标注的图片,经过NN Encoder变成一个向量vector,再经过NN Decoder还原至原来的输入图片,期待输入输出越接近越好,这就是Auto-encoder的基本思想。

那为什么这招能够work呢?

我个人的理解这是一种空间映射,将图像空间和矩阵空间映射在一起,而这个映射关系完全可以自己定义。

什么叫自己定义,举例而言,假设矩阵就两列,如果图片中看到光头的,矩阵第一维值就是1,其他为0。没看到光头,矩阵第一维值就是0,其他为1。这是一种方法,当然还可以是其他方法,比如男女分开、黑发黄发等。

这让我想到了一个游戏(没玩过的可以pass):这是开,这是闭,这是开还是闭。文字"开"、"闭"完全可以映射到手势、嘴巴等部分,但是要符合规律即可,起初没人告诉我"开"、"闭"应该对应什么,好似Auto-encoder是Self-supervised一样,需要去找一种映射关系,满足输出结果规律。

De-noising Auto-encoder

这也是Auto-encoder的一种,只不过是加入了noises,如下图所示:

说明:先对原始图片加入杂讯,杂讯图片再丢入Auto-encoder中,期待输入的结果和原始图片越像越好,这不就和BERT一模一样吗!BERT是在做填空题,它是在去杂讯。(不禁让我想起了去马的操作,想跃跃欲试了~)

以下是把de-noising auto-encoder思想套进BERT:

四、Feature Disentanglement

什么叫做Feature Disentanglement?

就是不要让Feature 纠结在一起,要把它们分开来。

举例而言,语音辨识经过Encoder的向量既有语者的资讯,又有声音的内容,如下图:

那怎么把这两者分开呢?参考左下角的链接。

分开后又有啥应用呢?

柯南变声器,或者是可以伪造别人的声音,听着这操作很骚啊~

说明:

将新垣结衣的语者特征和李宏毅老师的文字内容拼接,就可以以新垣结衣的声音来上课了。

五、Discrete Latent Representation

啥是Discrete Latent Representation,翻译成中文是离散潜在表示,其实这里就是针对Encoder得到的向量而言,向量这一块的表示方法,上面也提到了这块内容,就是你爱咋定义映射关系就咋定义,于是乎有了各种各样的定义方式,如下图:

说明:可以是Real numbers、Binary、One-hot等。

也可以设定一个索引表(codebook),看这个编码向量和索引表中哪个向量越接近(类似于self-attention中的q、k),如下图:

更狂一点的就是Encoder出来的不一样要是向量,直接就是一段文字:

直接一段文字,那不就是摘要吗?对,没错!

为了让模型学会说人话,还需要一个老师(Discriminator),如下图:

六、More Applications

不得不说,真是博大精深啊!

当然,还有其他应用,比如:

1、Generator:把Decoder拿出来,直接当成图片生成器来用。

2、Compression(压缩)

NN Encoder就是在做压缩Compression,可以直接拿来做图片压缩相关工作,再通过NN Decoder解压缩回去(Decompression),虽然会有一点图片失真。

3、Anomaly Detection(异常检测)

思想很直接,就是如果今天是一张不同于训练集的图片送入Auto-encoder中,那是还原不回去的,domain不一样嘞,从而可以检测出异常。

可以应用在Fraud Detection(欺诈检测)、Network Intrusion Detection(网络入侵检测)、Cancer Detection(癌症检测)等领域。

相关推荐
Tezign_space1 分钟前
AI重构私域增长:从流量收割到终身价值运营的三阶跃迁
人工智能·重构·aigc·数字资产管理·内容数字化
windwant2 分钟前
自然语言处理中的语音识别技术:从声波到语义的智能解码
人工智能·自然语言处理·语音识别
梦丶晓羽2 分钟前
自然语言处理:无监督朴素贝叶斯模型
人工智能·python·自然语言处理·tf-idf·贝叶斯定理·词袋模型·无监督朴素贝叶斯模型
xinxiangwangzhi_6 分钟前
多视图几何--从线性变换到射影变换--2线性变换
人工智能·算法·计算机视觉
云创智城-yuncitys6 分钟前
云创智城 ×DeepSeek:用 AI 重构停车能源生态,开启城市出行新范式
人工智能·重构·智慧城市·能源
atbigapp.com8 分钟前
AI数据分析:一键生成可视化分析思路
大数据·人工智能·数据分析
WBingJ12 分钟前
深度学习基础:线性代数本质2——线性组合、张成的空间与基
人工智能·深度学习·线性代数
小枫小疯13 分钟前
pytorch训练权重转化为tensorflow模型的教训
人工智能·pytorch·tensorflow
DO_Community22 分钟前
用不了 Manus ?其实你能用 Llama或DeepSeek 做个自己的 AI Agent
人工智能·机器学习·llama
山北雨夜漫步27 分钟前
机器学习 Day03 Numpy基本使用
人工智能·机器学习