数据清洗级可视化中,Pandas&numyp的主要作用

Pandas:

Pandas提供了强大的数据结构和数据分析工具,特别是其DataFrame数据结构,非常适合用于数据清洗和整理

例如,可以使用Pandas的dropna()函数删除包含缺失值的行或列,这是数据清洗的重要步骤。此外,Pandas还支持数据类型转换、异常值处理等数据清洗任务,以及时间序列图、柱状图和折线图等基本数据可视化方法

NumPy

专注于数值计算,提供了高效的数组操作功能,适用于大规模数值数据的清洗和预处理

两者的主要区别在于:

Pandas更侧重于数据分析和处理,提供了丰富的数据操作和分析功能,而NumPy更侧重于数值计算,提供了高效的数组操作功能。

Pandas的DataFrame是基于NumPy数组构建的,这意味着Pandas在处理表格数据时,底层仍然是使用NumPy数组进行存储和计算。

Pandas提供了更多的数据可视化功能,而NumPy主要关注数值计算,不直接提供数据可视化功能。

相关推荐
caiyueloveclamp42 分钟前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
J***Q29216 小时前
Vue数据可视化
前端·vue.js·信息可视化
2501_9417994820 小时前
Python高性能数据可视化与Plotly实战分享:大规模交互图表构建与性能优化经验
信息可视化
CodeLongBear1 天前
Python数据分析: 数据可视化入门:Matplotlib基础操作与多坐标系实战
python·信息可视化·数据分析
老歌老听老掉牙1 天前
Matplotlib Pyplot 数据可视化完全指南
python·信息可视化·matplotlib
CodeCraft Studio2 天前
【案例分享】如何利用图表控件TeeChart集成,实现可持续环境修复
信息可视化·图表控件·teechart·图表组件·图表工具·钻孔数据可视化·地质数据可视化
无心水2 天前
【Python实战进阶】2、Jupyter Notebook终极指南:为什么说不会Jupyter就等于不会Python?
python·jupyter·信息可视化·binder·google colab·python实战进阶·python工程化实战进阶
2501_941143732 天前
R语言统计分析与可视化实践分享:高效数据处理与图表展示优化经验
信息可视化
AI小云2 天前
【数据操作与可视化】Pandas数据处理-其他操作
python·pandas
2***57422 天前
前端数据可视化应用
前端·信息可视化