数据清洗级可视化中,Pandas&numyp的主要作用

Pandas:

Pandas提供了强大的数据结构和数据分析工具,特别是其DataFrame数据结构,非常适合用于数据清洗和整理

例如,可以使用Pandas的dropna()函数删除包含缺失值的行或列,这是数据清洗的重要步骤。此外,Pandas还支持数据类型转换、异常值处理等数据清洗任务,以及时间序列图、柱状图和折线图等基本数据可视化方法

NumPy

专注于数值计算,提供了高效的数组操作功能,适用于大规模数值数据的清洗和预处理

两者的主要区别在于:

Pandas更侧重于数据分析和处理,提供了丰富的数据操作和分析功能,而NumPy更侧重于数值计算,提供了高效的数组操作功能。

Pandas的DataFrame是基于NumPy数组构建的,这意味着Pandas在处理表格数据时,底层仍然是使用NumPy数组进行存储和计算。

Pandas提供了更多的数据可视化功能,而NumPy主要关注数值计算,不直接提供数据可视化功能。

相关推荐
实战项目2 小时前
基于Java的Hive数据仓库查询系统设计
信息可视化
weixin_462446232 小时前
Python 使用 PyQt5 + Pandas 实现 Excel(xlsx)批量合并工具(带图形界面)
python·qt·pandas
俊哥大数据3 小时前
【项目实战2】基于Flink电商直播实时分析大数据项目
信息可视化
数据智研15 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
min18112345618 小时前
PC端零基础跨职能流程图制作教程
大数据·人工智能·信息可视化·架构·流程图
GIS之路18 小时前
GDAL 实现矢量裁剪
前端·python·信息可视化
智航GIS18 小时前
10.6 Scrapy:Python 网页爬取框架
python·scrapy·信息可视化
计算机学姐21 小时前
基于SpringBoot的校园资源共享系统【个性化推荐算法+数据可视化统计】
java·vue.js·spring boot·后端·mysql·spring·信息可视化
dajun1811234561 天前
跨部门工作流泳道图在线绘制工具 PC
大数据·数据库·人工智能·信息可视化·架构·流程图
AC赳赳老秦1 天前
医疗数据安全处理:DeepSeek实现敏感信息脱敏与结构化提取
大数据·服务器·数据库·人工智能·信息可视化·数据库架构·deepseek