数据挖掘导论——第二章:数据

谈数据之前,我们要先知道数据有哪几种类型。数据的维度,数据的频率、位置、分布(方差或标准差衡量)等。

接着就是数据的质量,数据挖掘着眼于要么是对数据质量问题的检测和纠正,要么是使用可以容忍低质量数据的算法。第一步对数据质量问题的检测和纠正,通常称作数据清理。

涉及测量误差的问题:噪声、伪像、偏置、精度和准确度。

同时涉及测量误差和数据收集的问题:离群点、遗漏值、重复数据。

如何处理缺失值?删除/估计缺失值/分析过程中忽略缺失值/用所有可能值(按概率加权)替换

非标准化数据:不同特征的值域差别过大。这会带来什么问题?

1,在计算不同样本之间的距离时,假如不标准化,可能造成对特征的重要程度估计的影响

2,忽略了真正的偏差

两类标准化方式:

1,Max-Min标准化。容易受极端值影响。

2,Z-score标准化。使用前提:高斯分布。

标准化是同类数据之间进行的。

值得一提的是基因/蛋白表达矩阵(行为样本,列为基因),需要去除batch的时候,是沿着列标准化,要对基因表达正则化则沿着行(有些基因天生表达差异大)

对于分类数据或非量化数据,可以用one-hot encoding。

总之,数据清洗分为以下几步:数据去噪,清除异常值,处理缺失值,删除重复,分类数据编码,数据标准化。先后顺序可能会影响最后结果。

相关推荐
一个处女座的程序猿2 小时前
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读
人工智能·自然语言处理·小语言模型·slms
档案宝档案管理5 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
IT_Beijing_BIT6 小时前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8246 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_6 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年7 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus7 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^7 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz7 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究7 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习