数据挖掘导论——第二章:数据

谈数据之前,我们要先知道数据有哪几种类型。数据的维度,数据的频率、位置、分布(方差或标准差衡量)等。

接着就是数据的质量,数据挖掘着眼于要么是对数据质量问题的检测和纠正,要么是使用可以容忍低质量数据的算法。第一步对数据质量问题的检测和纠正,通常称作数据清理。

涉及测量误差的问题:噪声、伪像、偏置、精度和准确度。

同时涉及测量误差和数据收集的问题:离群点、遗漏值、重复数据。

如何处理缺失值?删除/估计缺失值/分析过程中忽略缺失值/用所有可能值(按概率加权)替换

非标准化数据:不同特征的值域差别过大。这会带来什么问题?

1,在计算不同样本之间的距离时,假如不标准化,可能造成对特征的重要程度估计的影响

2,忽略了真正的偏差

两类标准化方式:

1,Max-Min标准化。容易受极端值影响。

2,Z-score标准化。使用前提:高斯分布。

标准化是同类数据之间进行的。

值得一提的是基因/蛋白表达矩阵(行为样本,列为基因),需要去除batch的时候,是沿着列标准化,要对基因表达正则化则沿着行(有些基因天生表达差异大)

对于分类数据或非量化数据,可以用one-hot encoding。

总之,数据清洗分为以下几步:数据去噪,清除异常值,处理缺失值,删除重复,分类数据编码,数据标准化。先后顺序可能会影响最后结果。

相关推荐
aneasystone本尊几秒前
学习 LiteLLM 的日志系统
人工智能
秋邱5 分钟前
价值升维!公益赋能 + 绿色技术 + 终身学习,构建可持续教育 AI 生态
网络·数据库·人工智能·redis·python·学习·docker
Mintopia8 分钟前
🎭 小众语言 AIGC:当 Web 端的低资源语言遇上“穷得只剩文化”的生成挑战
人工智能·aigc·全栈
安达发公司9 分钟前
安达发|告别手工排产!车间排产软件成为中央厨房的“最强大脑”
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·车间排产软件
公众号-架构师汤师爷10 分钟前
n8n工作流实战:从0到1打造公众号热点选题一键采集智能体(万字图文)
人工智能·agent·智能体·n8n
Baihai_IDP32 分钟前
剖析大模型产生幻觉的三大根源
人工智能·面试·llm
DatGuy1 小时前
Week 26: 深度学习补遗:LSTM 原理与代码复现
人工智能·深度学习·lstm
杜子不疼.1 小时前
光影交织:基于Rokid AI眼镜的沉浸式影视剧情互动体验开发实战
人工智能
IT_陈寒1 小时前
Python高手都在用的5个隐藏技巧,让你的代码效率提升50%
前端·人工智能·后端
love530love2 小时前
【保姆级教程】Windows + Podman 从零部署 Duix-Avatar 数字人项目
人工智能·windows·笔记·python·数字人·podman·duix-avatar