测试大语言模型在嵌入式设备部署的可能性-ollama本地部署测试

前言

当今各种大语言模型百花齐放,为了方便使用者更加自由的使用大模型,将大模型变成如同棒球棍一样每个人都能用,并且顺手方便的工具,本地私有化具有重要意义。

本次测试使用ollama完成模型下载,过程简单快捷。

1、进入ollama:https://ollama.com/下载对应系统的ollama

2、windows中使用cmd或powershell执行ollama server进入ollama命令行

3、ollama run llm-model即可检测是否下载模型,并运行模型

本次测试的大语言模型大小均在1GB左右,具体如下图所示:

以上使用的模型最大的是llama3.2:1b,大小达到了1.3GB

在ollam项目的github:https://github.com/ollama/ollama页面可以看到提示:

因此,考虑到边缘嵌入式设备的内存大小,并且如果需要大语言模型能够在嵌入式设备中运行,那么必须要要留足空间给大语言模型。此外,还要留出一部分空间给比如数据库、UI等各种资源的。

如果大语言模型占用了1GB,个人认为嵌入式设备的RAM大小至少要3GB可能才不会影响其他进程的运行。

测试过程

测试问题

从解释性编程语言编程、日常问题和长句问题,三个方向出问题测试:

  1. 使用python编写一个贪吃蛇游戏
  2. 天空为什么是蓝色的?
  3. 当今时代,大语言模型大行其道,大量的文员类工作可能很快被大语言模型替代,如果因此被辞退应该何去何从?

测试效果

qwen2.5:1.5b
问题1
问题2
问题3

qwen2.5-coder:0.5b
问题1
问题2
问题3

qwen2.5:0.5b
问题1
问题2
问题3

llama3.2:1b
问题1

测试过程中出现过中文全部乱码的问题。

问题2
问题3

deepseek-r1:1.5b
问题1

编写代码大概率(3次测试出现2次)出现编写代码循环重复和无法停止的问题。

问题2
问题3

结论

从反应速度(完成问题回答)、回答问题准确性(语言一致性,但不包括回答正确性),两方面进行比较,分别分为低中高三个档次。

模型 模型大小 反应速度 准确性
qwen2.5:1.5b 986 MB
qwen2.5-coder:0.5b 531 MB
qwen2.5:0.5b 397 MB
llama3.2:1b 1.3 GB
deepseek-r1:1.5b 1.1 GB

总体来说qwen2.5:1.5b在边缘嵌入式设备部署最具有综合竞争力。同时,qwen2.5:0.5b在除了代码编程当中比较不足,但qwen2.5-coder:0.5b又专门提供了这方面的能力,两者的总大小小于qwen2.5:1.5b。

可以考虑使用一个折中的方法,主模型使用qwen2.5:0.5b用户回答问题,在回答问题前先问是否是需要编程,或使用正则表达式判断问题当中是否有python,cpp,c++,c语言,java等字段。如果需要编程则转到作为子模型的qwen2.5-coder:0.5b回答问题。

相关推荐
海边夕阳200610 分钟前
【每天一个AI小知识】:什么是大语言模型(LLM)?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·llm
算力魔方AIPC10 分钟前
破解“竖排文本”魔咒:在 RTX 3060 上微调 PaddleOCR-VL 以识别日本漫画
人工智能
袖手蹲21 分钟前
Arduino UNO Q 从 Arduino Cloud 远程控制闪烁 LED
人工智能·单片机·嵌入式硬件·电脑
doris61025 分钟前
设备点检、保养、维修一站式解决方案
大数据·数据库·人工智能
北京耐用通信26 分钟前
终结混合网络调试噩梦:耐达讯自动化实现EtherCAT对DeviceNet设备的直接读写
网络·人工智能·物联网·网络协议·自动化·信息与通信
BFT白芙堂26 分钟前
Franka机械臂“举一反三”:LLM Trainer如何通过单次演示实现自动化数据生成与长程任务学习
人工智能·学习·机器学习·自动化·模型训练·具身智能·franka
三掌柜66631 分钟前
2025三掌柜赠书活动第四十八期 Vibe Coding:AI编程时代的认知重构
人工智能
多则惑少则明1 小时前
AI测试、大模型测试(三)AI语音产品测试&AI测试边界
人工智能·语音识别·ai大模型测试
后端小肥肠1 小时前
突破 LLM 极限!n8n + MemMachine 打造“无限流”小说生成器
人工智能·aigc·agent
道19931 小时前
PyTorch 从小白到高级进阶教程[工业级示例](三)
人工智能·pytorch·python