测试大语言模型在嵌入式设备部署的可能性-ollama本地部署测试

前言

当今各种大语言模型百花齐放,为了方便使用者更加自由的使用大模型,将大模型变成如同棒球棍一样每个人都能用,并且顺手方便的工具,本地私有化具有重要意义。

本次测试使用ollama完成模型下载,过程简单快捷。

1、进入ollama:https://ollama.com/下载对应系统的ollama

2、windows中使用cmd或powershell执行ollama server进入ollama命令行

3、ollama run llm-model即可检测是否下载模型,并运行模型

本次测试的大语言模型大小均在1GB左右,具体如下图所示:

以上使用的模型最大的是llama3.2:1b,大小达到了1.3GB

在ollam项目的github:https://github.com/ollama/ollama页面可以看到提示:

因此,考虑到边缘嵌入式设备的内存大小,并且如果需要大语言模型能够在嵌入式设备中运行,那么必须要要留足空间给大语言模型。此外,还要留出一部分空间给比如数据库、UI等各种资源的。

如果大语言模型占用了1GB,个人认为嵌入式设备的RAM大小至少要3GB可能才不会影响其他进程的运行。

测试过程

测试问题

从解释性编程语言编程、日常问题和长句问题,三个方向出问题测试:

  1. 使用python编写一个贪吃蛇游戏
  2. 天空为什么是蓝色的?
  3. 当今时代,大语言模型大行其道,大量的文员类工作可能很快被大语言模型替代,如果因此被辞退应该何去何从?

测试效果

qwen2.5:1.5b
问题1
问题2
问题3

qwen2.5-coder:0.5b
问题1
问题2
问题3

qwen2.5:0.5b
问题1
问题2
问题3

llama3.2:1b
问题1

测试过程中出现过中文全部乱码的问题。

问题2
问题3

deepseek-r1:1.5b
问题1

编写代码大概率(3次测试出现2次)出现编写代码循环重复和无法停止的问题。

问题2
问题3

结论

从反应速度(完成问题回答)、回答问题准确性(语言一致性,但不包括回答正确性),两方面进行比较,分别分为低中高三个档次。

模型 模型大小 反应速度 准确性
qwen2.5:1.5b 986 MB
qwen2.5-coder:0.5b 531 MB
qwen2.5:0.5b 397 MB
llama3.2:1b 1.3 GB
deepseek-r1:1.5b 1.1 GB

总体来说qwen2.5:1.5b在边缘嵌入式设备部署最具有综合竞争力。同时,qwen2.5:0.5b在除了代码编程当中比较不足,但qwen2.5-coder:0.5b又专门提供了这方面的能力,两者的总大小小于qwen2.5:1.5b。

可以考虑使用一个折中的方法,主模型使用qwen2.5:0.5b用户回答问题,在回答问题前先问是否是需要编程,或使用正则表达式判断问题当中是否有python,cpp,c++,c语言,java等字段。如果需要编程则转到作为子模型的qwen2.5-coder:0.5b回答问题。

相关推荐
巫山老妖19 小时前
AI时代技术写作的必要性与价值
人工智能
今天也要学习吖19 小时前
【开源AI知识库系统】PandaWiki:为你的产品文档注入智能
人工智能·开源·aigc·ai知识库
aneasystone本尊19 小时前
学习 Dify 的代码沙箱
人工智能
飞哥数智坊19 小时前
以后,我们也许就不再“读”代码了
人工智能·ai编程
Juchecar19 小时前
“人+AI”协作:发挥人性“为世界赋予意义”的能力
人工智能
AI妈妈手把手19 小时前
深入浅出Faster R-CNN:目标检测的里程碑算法
人工智能·目标检测·ai·cnn·图像识别·faster rcnn
Lethehong19 小时前
搭建AI智能翻译器:快速部署Dify,接入AiOnly平台GPT-5模型
人工智能·gpt·dify·maas·aionly
乾坤瞬间19 小时前
【Java后端进行ai coding实践系列】如何使用ai coding实现计划任务增删改查
java·人工智能·python
BlueBirdssh19 小时前
大量文本向量化 + Embedding 检索 + LLM 具体流程解析
人工智能·embedding