深度学习基础:线性代数本质5——行列式

行列式 就是这个特殊的缩放比例,即线性变换对面积产生改变的比例。

1. 行列式的定义

我们注意到,有一些变换在结果上拉伸 了整个网格,有一些则是压缩 了,那如何度量这种压缩和拉伸 呢?或者换一种更容易思考的表达,某一块面积的缩放比例是多少?

其实,根据我们之前讲的基向量,我们只需要知道i帽j帽组成的面积为1的正方形面积缩放了多少。

所以行列式 就是这个特殊的缩放比例,即线性变换对面积产生改变的比例。

比如说一个线性变换的行列式为6,那么就算是它将一个区域的面积增加为原来的6倍

特别的,我们可以发现,如果一个矩阵的行列式为0 ,意味着它把这个空间降维 了(例如原本二维的变为了一维的线了),并且矩阵的列线性相关(倍数相关)

2. 空间定向

行列式是可以为负值的,正负表达的是方向,行列式的绝对值仍然表示区域面积的缩放比例,类似于纸的翻面,这个变换就相当于将纸翻到了另一面,我们称这样的变换改变了空间的定向。

在二维情况下,j起始状态在 i的左侧,经过变换后变为在右侧,就添加负号。

在三维情况下,右手定位为正,左手为负。

当 i 接近于 j 时,空间也就逐渐的被压缩,这意味着当 i 与 j 重合时,行列式为0。

3. 在三维空间中的行列式

依然是变换前后的缩放比例,不过这次它的是体积的缩放比例。

4. 结合行列式的数学计算

为了连接行列式的计算公式和几何直观,我们假设b c 为0,那么,a表示 i帽x轴缩放比例,d表示 j帽y轴缩放比例,ad表示拉伸倍数 ,同理来说,bc表示的就是压缩倍数 ,两者的和就是缩放比例

相关推荐
啵啵鱼爱吃小猫咪7 小时前
机械臂能量分析
线性代数·机器学习·概率论
Physicist in Geophy.9 小时前
一维波动方程(从变分法角度)
线性代数·算法·机器学习
AI科技星10 小时前
从ZUFT光速螺旋运动求导推出自然常数e
服务器·人工智能·线性代数·算法·矩阵
_OP_CHEN11 小时前
【算法基础篇】(五十八)线性代数之高斯消元法从原理到实战:手撕模板 + 洛谷真题全解
线性代数·算法·蓝桥杯·c/c++·线性方程组·acm/icpc·高斯消元法
Σίσυφος19001 天前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
_OP_CHEN1 天前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
芷栀夏1 天前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
种时光的人2 天前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_2 天前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙2 天前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构