深度学习基础:线性代数本质5——行列式

行列式 就是这个特殊的缩放比例,即线性变换对面积产生改变的比例。

1. 行列式的定义

我们注意到,有一些变换在结果上拉伸 了整个网格,有一些则是压缩 了,那如何度量这种压缩和拉伸 呢?或者换一种更容易思考的表达,某一块面积的缩放比例是多少?

其实,根据我们之前讲的基向量,我们只需要知道i帽j帽组成的面积为1的正方形面积缩放了多少。

所以行列式 就是这个特殊的缩放比例,即线性变换对面积产生改变的比例。

比如说一个线性变换的行列式为6,那么就算是它将一个区域的面积增加为原来的6倍

特别的,我们可以发现,如果一个矩阵的行列式为0 ,意味着它把这个空间降维 了(例如原本二维的变为了一维的线了),并且矩阵的列线性相关(倍数相关)

2. 空间定向

行列式是可以为负值的,正负表达的是方向,行列式的绝对值仍然表示区域面积的缩放比例,类似于纸的翻面,这个变换就相当于将纸翻到了另一面,我们称这样的变换改变了空间的定向。

在二维情况下,j起始状态在 i的左侧,经过变换后变为在右侧,就添加负号。

在三维情况下,右手定位为正,左手为负。

当 i 接近于 j 时,空间也就逐渐的被压缩,这意味着当 i 与 j 重合时,行列式为0。

3. 在三维空间中的行列式

依然是变换前后的缩放比例,不过这次它的是体积的缩放比例。

4. 结合行列式的数学计算

为了连接行列式的计算公式和几何直观,我们假设b c 为0,那么,a表示 i帽x轴缩放比例,d表示 j帽y轴缩放比例,ad表示拉伸倍数 ,同理来说,bc表示的就是压缩倍数 ,两者的和就是缩放比例

相关推荐
sunfove39 分钟前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
ComputerInBook2 小时前
代数学基本概念理解——幺正矩阵(Unitary matrix)(酉矩阵?)
线性代数·矩阵·正交矩阵·幺正矩阵·酉矩阵
AI科技星5 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
一碗姜汤5 小时前
【统计基础】从线性代数的直观角度理解SVD奇异值分解
线性代数
好奇龙猫5 小时前
【大学院-筆記試験練習:线性代数和数据结构(5)】
数据结构·线性代数
愚公搬代码1 天前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang1 天前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott1985121 天前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
AI科技星1 天前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活
sunfove1 天前
上帝的乐谱:从线性代数视角重构傅里叶变换 (FT) 的数学表达式
线性代数·机器学习·重构