Manus还没发,先复刻一套OpenManus吧!

前言

前几天Manus刷屏了,可惜没有邀请码,只能看着公开的资料分析了一通。

后来,忽然看到开源社区搞了个OpenManus,嗯,这不得赶紧试试。

OpenManus

首先,简单介绍下。

OpenManus 是 MetaGPT 社区的5个人花了3个小时,参考Manus搭建的一套替代方案。

它是一个通用型 AI 助手,能够执行各种任务,包括编程、信息检索、文件处理和网页浏览等。

底层使用了 anthropic-computer-usebrowser-use 开源项目。

由于开发时间在这儿放着呢,所以,优先实现了命令行交互,后续会推出WebUI。

本地安装

理论少谈,我们在本地安装试试。

下载代码

OpenManus是开源的,可以直接下载代码,zip/git什么方式都行。

代码地址:github.com/mannaandpoe...

安装环境

使用Cursor打开下载的项目。

键盘输入快捷键"Shift+Ctrl+P"打开命令面板,选择"Python:Create Environment"创建Python环境。

选择"Conda"方式。

选择"Python 3.12"。

等待Python虚拟环境初始化完成。

安装依赖。

pip install -r requirements.txt

修改配置

复制/config/config.example.toml/config/config.toml

我使用的"硅基流动"的API,如下设置即可,api_key设置为硅基流动密钥。

"硅基流动"密钥申请、使用可参考:《》。

ini 复制代码
# Global LLM configuration
[llm]
model = "deepseek-ai/DeepSeek-V3"
base_url = "https://api.siliconflow.cn/v1"
api_key = "sk-..."
max_tokens = 4096
temperature = 0.0

# [llm] #AZURE OPENAI:
# api_type= 'azure'
# model = "YOUR_MODEL_NAME" #"gpt-4o-mini"
# base_url = "{YOUR_AZURE_ENDPOINT.rstrip('/')}/openai/deployments/{AZURE_DEPOLYMENT_ID}"
# api_key = "AZURE API KEY"
# max_tokens = 8096
# temperature = 0.0
# api_version="AZURE API VERSION" #"2024-08-01-preview"

# Optional configuration for specific LLM models
[llm.vision]
model = "deepseek-ai/DeepSeek-V3"
base_url = "https://api.siliconflow.cn/v1"
api_key = "sk-..."

此处一定要使用有Function Call功能的模型。

运行

"Ctrl+`",打开 Cursor 的终端界面,输入启动命令。

css 复制代码
python .\main.py

等待提示词输入界面。

接下来输入目标就行了。

实例验证

我们开始验证,提示词如下:

帮我收集10条AI新闻,并整理好格式。

结果截图

启动任务

第二次思考就已经找到所需内容。

第三次、第四次思考已经完成任务。

之后应该可以结束任务了,但是,OpenManus 好像没有处理好结束的情况,一直到我设置的10次思考完成后才结束。

可以看到上面打开的内容就是整理好的资料。

错误处理

中间碰到了一些问题,记录如下。

更换默认搜索工具为百度

修改app/tool/google_search.py内容如下。

python 复制代码
import asyncio
from typing import List

from baidusearch.baidusearch import search

from app.tool.base import BaseTool


class GoogleSearch(BaseTool):
    name: str = "baidu_search"
    description: str = """Perform a Google search and return a list of relevant links.
Use this tool when you need to find information on the web, get up-to-date data, or research specific topics.
The tool returns a list of URLs that match the search query.
"""
    parameters: dict = {
        "type": "object",
        "properties": {
            "query": {
                "type": "string",
                "description": "(required) The search query to submit to Google.",
            },
            "num_results": {
                "type": "integer",
                "description": "(optional) The number of search results to return. Default is 10.",
                "default": 10,
            },
        },
        "required": ["query"],
    }

    async def execute(self, query: str, num_results: int = 10) -> List[str]:
        """
        Execute a Google search and return a list of URLs.

        Args:
            query (str): The search query to submit to Google.
            num_results (int, optional): The number of search results to return. Default is 10.

        Returns:
            List[str]: A list of URLs matching the search query.
        """
        # Run the search in a thread pool to prevent blocking
        loop = asyncio.get_event_loop()
        links = await loop.run_in_executor(
            None, lambda: list(search(query, num_results=num_results))
        )

        return links

安装所需依赖。

pip install baidusearch

按照上述处理后,重新运行即可。

更改思考次数

我尝试的时候,如果使用默认的思考次数max_steps=30,很容易触发硅基流动API的访问限制(RPM 或 TPM),我观察到大概12次左右触发,就给调整为10了。

修改/app.py

ini 复制代码
agent = Manus(
    name="Manus",
    description="A versatile agent that can solve various tasks using multiple tools",
    max_steps=10  # 在这里指定为 10
)

修改app/agent/toolcall.py

ini 复制代码
max_steps: int = 10

修改app/agent/swe.py

ini 复制代码
max_steps: int = 10

修改app/agent/planning.py

ini 复制代码
max_steps: int = 10

这点来看,赶出来的代码,工程化确实不大好。

总结

整体验证下来,该有的架子已经出来了,能力也是有的,但还比较初步,有很大的优化空间。比如:

  1. 默认的google搜索不适合国内使用。
  2. 有些API兼容有问题,当然也有可能是API提供方不是很标准。
  3. 默认每次提问都是30次思考,有些浪费token,并且出现重复思考情况。

等等。

大家如果碰到问题,可以去Github的Issues进行查看,应该有很多同仁已经碰到了。

不过即使有这样那样的问题,OpenManus 还是为我们提供了一种尝试 AGI 的可能,并且自由度很大,非常值得大家试试。

后续,我也会鼓捣一些功能出来,如果有所成果,再给大家分享。

相关推荐
AI技术控12 分钟前
计算机视觉算法实战——手势识别(主页有源码)
人工智能·算法·计算机视觉
数据库知识分享者小北36 分钟前
《阿里云Data+AI:开启数据智能新时代》电子书上线啦!
人工智能·阿里云·云计算
AORO_BEIDOU1 小时前
防爆手机如何突破“安全与效率“悖论?解析AORO M8的双驱动创新
网络·人工智能·科技·5g·安全·智能手机·信息与通信
不一样的信息安全1 小时前
两会期间的科技强音:DeepSeek技术引领人工智能新篇章
人工智能
十三画者1 小时前
【工具】IntelliGenes使用多基因组图谱进行生物标志物发现和预测分析的新型机器学习管道
人工智能·python·机器学习·数据挖掘·数据分析
图扑软件1 小时前
智慧城市新基建!图扑智慧路灯,点亮未来城市生活!
大数据·javascript·人工智能·智慧城市·数字孪生·可视化·智慧路灯
电子科技圈1 小时前
芯科科技推出的BG29超小型低功耗蓝牙®无线SoC,是蓝牙应用的理想之选
人工智能·嵌入式硬件·mcu·物联网·健康医疗·智能硬件·iot
Dm_dotnet1 小时前
使用C#创建一个MCP客户端
人工智能
小君1 小时前
让 Cursor 更加聪明
前端·人工智能·后端
0x2112 小时前
[论文阅读]Demystifying Prompts in Language Models via Perplexity Estimation
论文阅读·人工智能·语言模型