PyTorch多机训练Loss不一致问题排查指南:基于算子级一致性验证

比较二次训练过程中所有算子的误差,定位存在一致性问题的pytorch算子

一.背景

在分布式训练场景中,观察到以下现象:

  1. 相同超参配置下,多次训练的Loss曲线存在显著差异(波动幅度>5%)
  2. 模型收敛稳定性受训练节点数影响,节点越多差异越明显
  3. 梯度检查(Gradient Check)未发现异常,初步排除模型结构问题

二.技术方案

1.核心思路

通过算子级数值一致性验证,定位导致多机训练结果不一致的PyTorch原生算子。关键技术路径:

  1. 算子拦截 :利用__torch_dispatch__机制捕获所有ATen算子调用
  2. 双模校验
    • 基准模式:首次运行保存各算子输入/输出的统计特征
    • 验证模式:后续运行实时校验数值一致性
  3. 差异定位:当检测到统计特征偏离时,打印完整的调用栈信息

2.关键技术点

模块 实现方案
算子拦截 继承TorchDispatchMode重写调度逻辑
特征提取 计算张量均值(排除形状/类型等非数值因素)
差异检测 使用torch.allclose进行容差对比(默认atol=1e-4)
结果持久化 按rank序列化存储基准数据到磁盘
黑名单机制 过滤empty_like等非计算类算子,减少误报

三.代码

python 复制代码
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from dataclasses import dataclass
from typing import Any
from datetime import datetime
import numpy as np
import torch.nn as nn
import time
import os
import pickle
import inspect
import traceback

@dataclass
class _ProfilerState:
    cls: Any
    object: Any = None

def is_tensor(val):
    return isinstance(val, (torch.Tensor, nn.Parameter))

def do_compare(rank, name, tensor):
    timestamp = time.time()
    seconds = int(timestamp)
    millis = int((timestamp - seconds) * 1000)
    now=f"{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(seconds))}.{millis:03d}"
    has_nan = torch.isnan(tensor).any()
    if has_nan:
        print(f"has_nan {now} {rank} {name} {tensor.shape} {tensor.dtype} {tensor.device}")
        return False
    current_mean = torch.mean(tensor.float()).cpu().item()
    cache_file = f"/logs/rank_{rank}.pkl"
    os.makedirs(os.path.dirname(cache_file), exist_ok=True)
    stored_data = {}
    if os.path.exists(cache_file):
        try:
            with open(cache_file, 'rb') as f:
                stored_data = pickle.load(f)
        except:
            print("load failed:",cache_file)
            traceback.print_exc()
    if name in stored_data:
        if torch.allclose(torch.tensor(current_mean),
                         torch.tensor(stored_data[name]),
                         atol=1e-4):
            return True
        print("------------------------------In-----------------------------------")
        print(f"MisMatch {now} {rank} {name} {tensor.shape} {tensor.dtype} {tensor.device} {current_mean} {stored_data[name]} min:{torch.min(tensor)} max:{torch.max(tensor)}")
        return False
    else:
        stored_data[name] = current_mean
        with open(cache_file, 'wb') as f:
            pickle.dump(stored_data, f)
        return True

index_counter = 0
def compare_tensor(name, tensor):
    global index_counter
    index_counter += 1
    rank=torch.distributed.get_rank()
    if is_tensor(tensor):
        if not do_compare(rank,f"{name}-{index_counter}",tensor):
            return False
    elif isinstance(tensor, (tuple, list)):
        for idx, t in enumerate(tensor):
            if is_tensor(t):
                if not do_compare(rank,f"{name}-{index_counter}-{idx}",t):
                    return False
    return True

class TorchDumpDispatchMode(TorchDispatchMode):
    def __init__(self,parent):
        super().__init__()
        self.parent=parent

    def is_allow_dump(self,name):
        black_list=["empty","like","zero","detach","has","view",
                    "copy","arange","fill","ones","lift_fresh","alias",
                    "scalar_tensor","clone","stack","slice","source","barrier",
                    "select","random","unsqueeze","expand","normal_"]
        for i in black_list:
            if name.find(i)>=0:
                return False
        return True

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        func_packet = func._overloadpacket
        op_name=f"{func}"
        enable_dump= self.is_allow_dump(op_name)
        if kwargs is None:
            kwargs = {}
        if enable_dump:
            torch.cuda.synchronize()
            if not compare_tensor(f"{op_name}-[input]", args):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i}:{frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out-----------------------------------")
        ret= func(*args, **kwargs)
        if enable_dump:
            torch.cuda.synchronize()
            if not compare_tensor(f"{op_name}-[output0]", ret):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i} {frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out0-----------------------------------")
            if not compare_tensor(f"{op_name}-[output1]", args):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i} {frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out1-----------------------------------")
        return ret

class TorchDebugDumper:
    _CURRENT_Dumper = None
    def __init__(self):
        self.p= _ProfilerState(TorchDumpDispatchMode)

    def __enter__(self):
        assert TorchDebugDumper._CURRENT_Dumper is None
        TorchDebugDumper._CURRENT_Dumper = self
        if self.p.object is None:
            o = self.p.cls(self)
            o.__enter__()
            self.p.object = o
        else:
            self.p.object.step()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        TorchDebugDumper._CURRENT_Dumper = None
        if self.p.object is not None:
            self.p.object.__exit__(exc_type, exc_val, exc_tb)
            del self.p.object

def main():
    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
        forward_step,
        extra_args_provider=llama_argument_handler,
        args_defaults={"tokenizer_type": "GPT2BPETokenizer"},
    )
if __name__ == "__main__":
    with TorchDebugDumper():
		main()
相关推荐
子夜江寒19 小时前
基于 OpenCV 的图像形态学与边缘检测
python·opencv·计算机视觉
工藤学编程20 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅21 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技1 天前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102161 天前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧1 天前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)1 天前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
智航GIS1 天前
10.4 Selenium:Web 自动化测试框架
前端·python·selenium·测试工具
没学上了1 天前
CNNMNIST
人工智能·深度学习
jarreyer1 天前
摄像头相关记录
python