PyTorch多机训练Loss不一致问题排查指南:基于算子级一致性验证

比较二次训练过程中所有算子的误差,定位存在一致性问题的pytorch算子

一.背景

在分布式训练场景中,观察到以下现象:

  1. 相同超参配置下,多次训练的Loss曲线存在显著差异(波动幅度>5%)
  2. 模型收敛稳定性受训练节点数影响,节点越多差异越明显
  3. 梯度检查(Gradient Check)未发现异常,初步排除模型结构问题

二.技术方案

1.核心思路

通过算子级数值一致性验证,定位导致多机训练结果不一致的PyTorch原生算子。关键技术路径:

  1. 算子拦截 :利用__torch_dispatch__机制捕获所有ATen算子调用
  2. 双模校验
    • 基准模式:首次运行保存各算子输入/输出的统计特征
    • 验证模式:后续运行实时校验数值一致性
  3. 差异定位:当检测到统计特征偏离时,打印完整的调用栈信息

2.关键技术点

模块 实现方案
算子拦截 继承TorchDispatchMode重写调度逻辑
特征提取 计算张量均值(排除形状/类型等非数值因素)
差异检测 使用torch.allclose进行容差对比(默认atol=1e-4)
结果持久化 按rank序列化存储基准数据到磁盘
黑名单机制 过滤empty_like等非计算类算子,减少误报

三.代码

python 复制代码
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from dataclasses import dataclass
from typing import Any
from datetime import datetime
import numpy as np
import torch.nn as nn
import time
import os
import pickle
import inspect
import traceback

@dataclass
class _ProfilerState:
    cls: Any
    object: Any = None

def is_tensor(val):
    return isinstance(val, (torch.Tensor, nn.Parameter))

def do_compare(rank, name, tensor):
    timestamp = time.time()
    seconds = int(timestamp)
    millis = int((timestamp - seconds) * 1000)
    now=f"{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(seconds))}.{millis:03d}"
    has_nan = torch.isnan(tensor).any()
    if has_nan:
        print(f"has_nan {now} {rank} {name} {tensor.shape} {tensor.dtype} {tensor.device}")
        return False
    current_mean = torch.mean(tensor.float()).cpu().item()
    cache_file = f"/logs/rank_{rank}.pkl"
    os.makedirs(os.path.dirname(cache_file), exist_ok=True)
    stored_data = {}
    if os.path.exists(cache_file):
        try:
            with open(cache_file, 'rb') as f:
                stored_data = pickle.load(f)
        except:
            print("load failed:",cache_file)
            traceback.print_exc()
    if name in stored_data:
        if torch.allclose(torch.tensor(current_mean),
                         torch.tensor(stored_data[name]),
                         atol=1e-4):
            return True
        print("------------------------------In-----------------------------------")
        print(f"MisMatch {now} {rank} {name} {tensor.shape} {tensor.dtype} {tensor.device} {current_mean} {stored_data[name]} min:{torch.min(tensor)} max:{torch.max(tensor)}")
        return False
    else:
        stored_data[name] = current_mean
        with open(cache_file, 'wb') as f:
            pickle.dump(stored_data, f)
        return True

index_counter = 0
def compare_tensor(name, tensor):
    global index_counter
    index_counter += 1
    rank=torch.distributed.get_rank()
    if is_tensor(tensor):
        if not do_compare(rank,f"{name}-{index_counter}",tensor):
            return False
    elif isinstance(tensor, (tuple, list)):
        for idx, t in enumerate(tensor):
            if is_tensor(t):
                if not do_compare(rank,f"{name}-{index_counter}-{idx}",t):
                    return False
    return True

class TorchDumpDispatchMode(TorchDispatchMode):
    def __init__(self,parent):
        super().__init__()
        self.parent=parent

    def is_allow_dump(self,name):
        black_list=["empty","like","zero","detach","has","view",
                    "copy","arange","fill","ones","lift_fresh","alias",
                    "scalar_tensor","clone","stack","slice","source","barrier",
                    "select","random","unsqueeze","expand","normal_"]
        for i in black_list:
            if name.find(i)>=0:
                return False
        return True

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        func_packet = func._overloadpacket
        op_name=f"{func}"
        enable_dump= self.is_allow_dump(op_name)
        if kwargs is None:
            kwargs = {}
        if enable_dump:
            torch.cuda.synchronize()
            if not compare_tensor(f"{op_name}-[input]", args):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i}:{frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out-----------------------------------")
        ret= func(*args, **kwargs)
        if enable_dump:
            torch.cuda.synchronize()
            if not compare_tensor(f"{op_name}-[output0]", ret):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i} {frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out0-----------------------------------")
            if not compare_tensor(f"{op_name}-[output1]", args):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i} {frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out1-----------------------------------")
        return ret

class TorchDebugDumper:
    _CURRENT_Dumper = None
    def __init__(self):
        self.p= _ProfilerState(TorchDumpDispatchMode)

    def __enter__(self):
        assert TorchDebugDumper._CURRENT_Dumper is None
        TorchDebugDumper._CURRENT_Dumper = self
        if self.p.object is None:
            o = self.p.cls(self)
            o.__enter__()
            self.p.object = o
        else:
            self.p.object.step()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        TorchDebugDumper._CURRENT_Dumper = None
        if self.p.object is not None:
            self.p.object.__exit__(exc_type, exc_val, exc_tb)
            del self.p.object

def main():
    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
        forward_step,
        extra_args_provider=llama_argument_handler,
        args_defaults={"tokenizer_type": "GPT2BPETokenizer"},
    )
if __name__ == "__main__":
    with TorchDebugDumper():
		main()
相关推荐
子燕若水2 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室3 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿3 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫3 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手3 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记3 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元4 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术4 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
烛阴4 小时前
简单入门Python装饰器
前端·python