PyTorch多机训练Loss不一致问题排查指南:基于算子级一致性验证

比较二次训练过程中所有算子的误差,定位存在一致性问题的pytorch算子

一.背景

在分布式训练场景中,观察到以下现象:

  1. 相同超参配置下,多次训练的Loss曲线存在显著差异(波动幅度>5%)
  2. 模型收敛稳定性受训练节点数影响,节点越多差异越明显
  3. 梯度检查(Gradient Check)未发现异常,初步排除模型结构问题

二.技术方案

1.核心思路

通过算子级数值一致性验证,定位导致多机训练结果不一致的PyTorch原生算子。关键技术路径:

  1. 算子拦截 :利用__torch_dispatch__机制捕获所有ATen算子调用
  2. 双模校验
    • 基准模式:首次运行保存各算子输入/输出的统计特征
    • 验证模式:后续运行实时校验数值一致性
  3. 差异定位:当检测到统计特征偏离时,打印完整的调用栈信息

2.关键技术点

模块 实现方案
算子拦截 继承TorchDispatchMode重写调度逻辑
特征提取 计算张量均值(排除形状/类型等非数值因素)
差异检测 使用torch.allclose进行容差对比(默认atol=1e-4)
结果持久化 按rank序列化存储基准数据到磁盘
黑名单机制 过滤empty_like等非计算类算子,减少误报

三.代码

python 复制代码
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from dataclasses import dataclass
from typing import Any
from datetime import datetime
import numpy as np
import torch.nn as nn
import time
import os
import pickle
import inspect
import traceback

@dataclass
class _ProfilerState:
    cls: Any
    object: Any = None

def is_tensor(val):
    return isinstance(val, (torch.Tensor, nn.Parameter))

def do_compare(rank, name, tensor):
    timestamp = time.time()
    seconds = int(timestamp)
    millis = int((timestamp - seconds) * 1000)
    now=f"{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(seconds))}.{millis:03d}"
    has_nan = torch.isnan(tensor).any()
    if has_nan:
        print(f"has_nan {now} {rank} {name} {tensor.shape} {tensor.dtype} {tensor.device}")
        return False
    current_mean = torch.mean(tensor.float()).cpu().item()
    cache_file = f"/logs/rank_{rank}.pkl"
    os.makedirs(os.path.dirname(cache_file), exist_ok=True)
    stored_data = {}
    if os.path.exists(cache_file):
        try:
            with open(cache_file, 'rb') as f:
                stored_data = pickle.load(f)
        except:
            print("load failed:",cache_file)
            traceback.print_exc()
    if name in stored_data:
        if torch.allclose(torch.tensor(current_mean),
                         torch.tensor(stored_data[name]),
                         atol=1e-4):
            return True
        print("------------------------------In-----------------------------------")
        print(f"MisMatch {now} {rank} {name} {tensor.shape} {tensor.dtype} {tensor.device} {current_mean} {stored_data[name]} min:{torch.min(tensor)} max:{torch.max(tensor)}")
        return False
    else:
        stored_data[name] = current_mean
        with open(cache_file, 'wb') as f:
            pickle.dump(stored_data, f)
        return True

index_counter = 0
def compare_tensor(name, tensor):
    global index_counter
    index_counter += 1
    rank=torch.distributed.get_rank()
    if is_tensor(tensor):
        if not do_compare(rank,f"{name}-{index_counter}",tensor):
            return False
    elif isinstance(tensor, (tuple, list)):
        for idx, t in enumerate(tensor):
            if is_tensor(t):
                if not do_compare(rank,f"{name}-{index_counter}-{idx}",t):
                    return False
    return True

class TorchDumpDispatchMode(TorchDispatchMode):
    def __init__(self,parent):
        super().__init__()
        self.parent=parent

    def is_allow_dump(self,name):
        black_list=["empty","like","zero","detach","has","view",
                    "copy","arange","fill","ones","lift_fresh","alias",
                    "scalar_tensor","clone","stack","slice","source","barrier",
                    "select","random","unsqueeze","expand","normal_"]
        for i in black_list:
            if name.find(i)>=0:
                return False
        return True

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        func_packet = func._overloadpacket
        op_name=f"{func}"
        enable_dump= self.is_allow_dump(op_name)
        if kwargs is None:
            kwargs = {}
        if enable_dump:
            torch.cuda.synchronize()
            if not compare_tensor(f"{op_name}-[input]", args):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i}:{frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out-----------------------------------")
        ret= func(*args, **kwargs)
        if enable_dump:
            torch.cuda.synchronize()
            if not compare_tensor(f"{op_name}-[output0]", ret):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i} {frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out0-----------------------------------")
            if not compare_tensor(f"{op_name}-[output1]", args):
                stack = inspect.stack()
                i=0
                for frame_info in reversed(stack):
                    msg=f"{i} {frame_info.filename}:{frame_info.lineno}"
                    print(msg)
                    i+=1
                print("------------------------------Out1-----------------------------------")
        return ret

class TorchDebugDumper:
    _CURRENT_Dumper = None
    def __init__(self):
        self.p= _ProfilerState(TorchDumpDispatchMode)

    def __enter__(self):
        assert TorchDebugDumper._CURRENT_Dumper is None
        TorchDebugDumper._CURRENT_Dumper = self
        if self.p.object is None:
            o = self.p.cls(self)
            o.__enter__()
            self.p.object = o
        else:
            self.p.object.step()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        TorchDebugDumper._CURRENT_Dumper = None
        if self.p.object is not None:
            self.p.object.__exit__(exc_type, exc_val, exc_tb)
            del self.p.object

def main():
    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
        forward_step,
        extra_args_provider=llama_argument_handler,
        args_defaults={"tokenizer_type": "GPT2BPETokenizer"},
    )
if __name__ == "__main__":
    with TorchDebugDumper():
		main()
相关推荐
lboyj33 分钟前
新能源汽车电控系统的大尺寸PCB需求:猎板PCB的技术突围
大数据·网络·人工智能
HABuo39 分钟前
【YOLOv8】YOLOv8改进系列(5)----替换主干网络之EfficientFormerV2
人工智能·深度学习·yolo·目标检测·计算机视觉
訾博ZiBo1 小时前
AI日报 - 2025年3月16日
人工智能
(initial)1 小时前
大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
人工智能·强化学习
墨痕_7771 小时前
基于Matlab设计GUI图像处理交互界面
python
subject625Ruben2 小时前
Matlab多种算法解决未来杯B的多分类问题
人工智能·算法·机器学习·数学建模·matlab·分类·未来杯
Liudef062 小时前
文生图技术的演进、挑战与未来:一场重构人类创造力的革命
人工智能·stable diffusion·重构
RestCloud2 小时前
AI大模型本地化&谷云科技全域集成能力重构企业数智化生态
人工智能·ai·数智化·智能体·aiagent·deepseek·集成平台
Tacy02132 小时前
Conda+jupyterlab
python·jupyter·conda·ai编程
程序员三藏2 小时前
Python接口自动化测试之Token详解及应用
自动化测试·软件测试·python·测试工具·程序人生·职场和发展·测试用例