小秋的矩阵

0小秋的矩阵 - 蓝桥云课

问题描述

给你一个 n 行 m 列只包含 0 和 1 的矩阵,求它的所有子矩阵中,是方阵而且恰好包含 k 个 0 的数量。

方阵是行数和列数相等的矩阵。

子矩阵是从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序),被称为原矩阵的一个子矩阵。

输入格式

第 1 行输入 3 个整数 n, m, k,表示矩阵的行数,列数和所求子矩阵包含 0 的数量。

接下来 n 行,每行输入 m 个整数,第 i 行表示给定矩阵的第 i 行。

输出格式

输出仅一行,包含 1 个整数,表示答案。

样例输入

复制代码
3 4 2
0 1 1 0
1 0 0 1
0 1 0 0

样例输出

复制代码
4

说明

共有 4 个阶数为 2 的方阵符合条件,左上角的坐标分别为 (1,1), (1,2), (1,3), (2,1)。

评测数据规模

  • 对于 20% 的评测数据,1 ≤ n × m ≤ 10³。
  • 对于 40% 的评测数据,1 ≤ n × m ≤ 10³。
  • 对于 100% 的评测数据,1 ≤ n × m ≤ 10⁶,0 ≤ k ≤ n × m。

运行限制

语言 最大运行时间 最大运行内存
C 1s 256M
C++ 1s 256M
Python3 3s 256M
Java 2s 256M
PyPy3 3s 256M
Go 3s 256M

思路:

我们可以把0变成1,1变成0.这样计算0的数量就变成计算1的数量。之后就是正常的二维前缀和,枚举正方形。

有两个点:

1.找出每一个正方形的(x1,y1),(x2,y2)

2.边长的取值范围

代码如下:

复制代码
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1e3+10;
int n,m,k,ans;
int a[N][N];
int pre[N][N];
int main() 
{
     ios::sync_with_stdio(0);
     cin.tie(0);
     cout.tie(0);
     cin >> n >> m >> k;
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 1 ; j <= m ; j++)//0和1变换,然后求出子矩阵包含k个1的数量 
        {
            int temp;
            cin >> temp;
            if(temp == 1)
            a[i][j] = 0;
            else if(temp == 0) 
            a[i][j] = 1; 
        }
    }
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 1 ; j <= m ; j++)
        {
            pre[i][j] = pre[i-1][j] + pre[i][j-1] - pre[i-1][j-1] + a[i][j];
        }
     } 
     int ans = 0;
    for (int i = 1; i <= n; i++) 
    {
        for (int j = 1; j <= m; j++) 
        {
            int max_len = min(n - i + 1, m - j + 1);
            for (int l = 1; l <= max_len; l++)// 枚举边长 
            {
                int x2 = i + l - 1;
                int y2 = j + l - 1;
                int x1 = i;
                int y1 = j; 
                int sum = pre[x2][y2] - pre[x1-1][y2] - pre[x2][y1-1] + pre[x1-1][y1-1];
                if (sum == k) 
                {
                    ans++;
                }
            }
        }
    }
    cout << ans;
    return 0;
}
相关推荐
wwlsm_zql1 天前
MITRE ATLAS对抗威胁矩阵:守护LLM安全的中国实践指南
人工智能·线性代数·安全·矩阵·大模型
wewe_daisy1 天前
矩阵、线性代数
线性代数·算法·矩阵
wwlsm_zql2 天前
MITRE ATLAS 对抗威胁矩阵与 LLM 安全
人工智能·线性代数·安全·矩阵·大模型
cuigaosheng2 天前
关于px4 1.15.0电机控制有效矩阵的更新
线性代数·矩阵·无人机
YoungHong19922 天前
面试经典150题[037]:矩阵置零(LeetCode 73)
leetcode·面试·矩阵
未知陨落2 天前
LeetCode:21.搜索二维矩阵Ⅱ
线性代数·算法·leetcode·矩阵
茜茜西西CeCe2 天前
数字图像处理-函数矩阵
线性代数·算法·matlab·矩阵·函数·数字图像处理
淘小白_TXB219611 天前
头条号矩阵运营经验访谈记录
线性代数·矩阵
智者知已应修善业11 天前
【矩阵找最大小所在位置】2022-11-13
c语言·c++·经验分享·笔记·算法·矩阵
semantist@语校11 天前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt