复矩阵与共轭转置矩阵乘积及其平方根矩阵

是一个 的复数矩阵,其共轭转置矩阵(Hermitian 共轭)记为 (即 ),则矩阵 )和 )的性质如下文所述。

1. Hermitian 性(自共轭性)

都是 Hermitian 矩阵,即:

同理

这意味着它们的特征值都是实数

2. 半正定性(Positive Semi-definiteness)

对于任意非零向量 ,有:

因此, 是半正定矩阵(所有特征值 )。同理 也是半正定的。

3. 秩的关系

的秩等于 的秩。

4. 特征值的非负性

由于 是半正定的,它们的特征值都是非负实数。此外:

的非零特征值与 的非零特征值相同(尽管维数可能不同)。

如果 是方阵且可逆,则 是正定矩阵(所有特征值)。

5. 矩阵 开平方根

5.1 存在平方根矩阵

首先, 时, 可以开平方根!

因为 是半正定 Hermitian 矩阵,它一定存在唯一的半正定平方根

即:

5.2 计算方法

5.2.1. 谱分解(对角化)

由于 是 Hermitian 矩阵,它可以被对角化为:

其中 是酉矩阵(), 是对角矩阵,其对角元素是 的特征值(非负实数)。

则平方根为:

其中 是对 的对角元素取算术平方根。

5.2.2. Cholesky 分解(如果 正定)

如果 是正定的(即 是满秩的),还可以计算 Cholesky 分解:

其中 是下三角矩阵,此时 可以取

综上, 是半正定 Hermitian 矩阵,其特征值非负,可以开平方根。

平方根 存在且唯一(如果要求半正定),可以通过谱分解或 Cholesky 分解计算。

如果 是方阵且可逆,则 是正定的,平方根计算更简单。

5.3 共轭转置矩阵乘积平方根的常见应用场景

在量子力学中,密度矩阵 满足 且半正定,可以定义 。在信号处理和统计学中,协方差矩阵 是半正定的,其平方根用于白化变换。在奇异值分解(SVD)中, 的平方根与 的奇异值直接相关。

重要结论

复数矩阵 与其共轭转置 的乘积 总是可以开平方根,并且该平方根是唯一的半正定矩阵。

相关推荐
电子_咸鱼14 小时前
LeetCode——Hot 100【电话号码的字母组合】
数据结构·算法·leetcode·链表·职场和发展·贪心算法·深度优先
仰泳的熊猫14 小时前
LeetCode:785. 判断二分图
数据结构·c++·算法·leetcode
rit843249914 小时前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘15 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛16 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
my rainy days16 小时前
C++:友元
开发语言·c++·算法
haoly198917 小时前
数据结构和算法篇-归并排序的两个视角-迭代和递归
数据结构·算法·归并排序
微笑尅乐17 小时前
中点为根——力扣108.讲有序数组转换为二叉搜索树
算法·leetcode·职场和发展
之墨_17 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始17 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine